Super-Resolution via Wavelet Transform and Advanced Learning Techniques

Yi-Wen Chen, Jian-Jiun Ding
{"title":"Super-Resolution via Wavelet Transform and Advanced Learning Techniques","authors":"Yi-Wen Chen, Jian-Jiun Ding","doi":"10.1109/ISPACS48206.2019.8986242","DOIUrl":null,"url":null,"abstract":"Image super-resolution aims to generate a high-resolution (HR) image from a low-resolution (LR) input image. In this paper, we propose a deep learning-based approach for image super-resolution. We use the wavelet transform to separate the input image into four frequency bands, and train a model for each sub-band. By processing information from different frequency bands via different CNN models, we can extract features more efficiently and learn better LR-to-HR mapping. In addition, we add dense connection to the model to make better use of the internal features in the CNN model. Furthermore, geometric self-ensemble is applied in the testing stage to maximize the potential performance. Extensive experiments on four benchmark datasets show the efficiency of the proposed method.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"106 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image super-resolution aims to generate a high-resolution (HR) image from a low-resolution (LR) input image. In this paper, we propose a deep learning-based approach for image super-resolution. We use the wavelet transform to separate the input image into four frequency bands, and train a model for each sub-band. By processing information from different frequency bands via different CNN models, we can extract features more efficiently and learn better LR-to-HR mapping. In addition, we add dense connection to the model to make better use of the internal features in the CNN model. Furthermore, geometric self-ensemble is applied in the testing stage to maximize the potential performance. Extensive experiments on four benchmark datasets show the efficiency of the proposed method.
基于小波变换和先进学习技术的超分辨率
图像超分辨率旨在从低分辨率输入图像生成高分辨率(HR)图像。在本文中,我们提出了一种基于深度学习的图像超分辨率方法。我们使用小波变换将输入图像分成四个频段,并为每个频段训练一个模型。通过不同的CNN模型处理不同频带的信息,可以更有效地提取特征,更好地学习LR-to-HR映射。此外,我们在模型中加入密集连接,以更好地利用CNN模型的内部特征。此外,在测试阶段采用几何自系综,以最大限度地提高潜在性能。在四个基准数据集上的大量实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信