Explicit separations between randomized and deterministic Number-on-Forehead communication

Zander Kelley, Shachar Lovett, R. Meka
{"title":"Explicit separations between randomized and deterministic Number-on-Forehead communication","authors":"Zander Kelley, Shachar Lovett, R. Meka","doi":"10.48550/arXiv.2308.12451","DOIUrl":null,"url":null,"abstract":"We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \\to \\{0,1\\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.12451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the power of randomness in the Number-on-Forehead (NOF) model in communication complexity. We construct an explicit 3-player function $f:[N]^3 \to \{0,1\}$, such that: (i) there exist a randomized NOF protocol computing it that sends a constant number of bits; but (ii) any deterministic or nondeterministic NOF protocol computing it requires sending about $(\log N)^{1/3}$ many bits. This exponentially improves upon the previously best-known such separation. At the core of our proof is an extension of a recent result of the first and third authors on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.
明确区分随机化和确定性数字-前额通信
我们研究了随机数-额(NOF)模型在通信复杂度方面的随机性的作用。我们构造了一个明确的3-玩家函数$f:[N]^3 \到\{0,1\}$,这样:(i)存在一个随机的NOF协议,计算它发送恒定数量的比特;但(ii)任何确定性或非确定性的NOF协议计算都需要发送大约$(\log N)^{1/3}$许多位。这大大改进了以前最著名的这种分离。我们证明的核心是将第一和第三作者最近关于无3项等差数列的整数集的结果推广到非等差集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信