Ankita Chaturvedi, Dr. Sanjay Kumar Singh, Dr. Umesh Singh
{"title":"Maximum Product Spacings Estimator for Fuzzy Data Using Inverse Lindley Distribution","authors":"Ankita Chaturvedi, Dr. Sanjay Kumar Singh, Dr. Umesh Singh","doi":"10.17713/ajs.v52i2.1395","DOIUrl":null,"url":null,"abstract":"The article addresses the problem of parameter estimation of the inverse Lindley distribution when the observations are fuzzy. The estimation of the unknown model parameter was performed using both classical and Bayesian methods. In the classical approach, the estimation of the population parameter is performed using the maximum likelihood (ML) method and the maximum product of distances (MPS) method. In the Bayesian setup, the estimation is obtained using the squared error loss function (SELF) with the Markov Chain Monte Carlo (MCMC) technique. Asymptotic confidence intervals and highest posterior density (HPD) credible intervals for the unknown parameter are also obtained. The performances of the estimators are compared based on their MSEs. Finally, a real data set is analyzed for numerical illustration of the above estimation methods.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i2.1395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
The article addresses the problem of parameter estimation of the inverse Lindley distribution when the observations are fuzzy. The estimation of the unknown model parameter was performed using both classical and Bayesian methods. In the classical approach, the estimation of the population parameter is performed using the maximum likelihood (ML) method and the maximum product of distances (MPS) method. In the Bayesian setup, the estimation is obtained using the squared error loss function (SELF) with the Markov Chain Monte Carlo (MCMC) technique. Asymptotic confidence intervals and highest posterior density (HPD) credible intervals for the unknown parameter are also obtained. The performances of the estimators are compared based on their MSEs. Finally, a real data set is analyzed for numerical illustration of the above estimation methods.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.