Muhammad Hazman bin Sharuddin, MH Sulaiman, S. Kamaruddin, AH Dahnel, N. A. Abd Halim, Mjm Ridzuan, A. M. Abdul-Rani
{"title":"Properties and tribological evaluation of graphene and fullerene nanoparticles as additives in oil lubrication","authors":"Muhammad Hazman bin Sharuddin, MH Sulaiman, S. Kamaruddin, AH Dahnel, N. A. Abd Halim, Mjm Ridzuan, A. M. Abdul-Rani","doi":"10.1177/13506501231175540","DOIUrl":null,"url":null,"abstract":"In this study, SAE-0W20 engine oil was mixed with graphene and fullerene nanoparticles. The goal of this study was to evaluate and compare the effects of different carbon nanoparticles on the thermal, rheological, and tribological properties of engine oil, such as thermal degradation, viscosity, friction, and wear. Using a two-step process, graphene and fullerene nanostructures were dispersed in low-viscosity SAE-0W20 engine oil at a concentration of 0.05 wt.%. The friction and wear characteristics were evaluated in a customized cylindrical block-on-ring tribology test according to the ASTM G77 standard. Graphene and fullerene nanoparticles protect contact surfaces by forming a very thin protective film between moving mechanical parts thus resulting in wear and friction reduction. The results showed graphene nanoparticles have improved significantly the tribological performance of SAE-0W20 engine oil.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231175540","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, SAE-0W20 engine oil was mixed with graphene and fullerene nanoparticles. The goal of this study was to evaluate and compare the effects of different carbon nanoparticles on the thermal, rheological, and tribological properties of engine oil, such as thermal degradation, viscosity, friction, and wear. Using a two-step process, graphene and fullerene nanostructures were dispersed in low-viscosity SAE-0W20 engine oil at a concentration of 0.05 wt.%. The friction and wear characteristics were evaluated in a customized cylindrical block-on-ring tribology test according to the ASTM G77 standard. Graphene and fullerene nanoparticles protect contact surfaces by forming a very thin protective film between moving mechanical parts thus resulting in wear and friction reduction. The results showed graphene nanoparticles have improved significantly the tribological performance of SAE-0W20 engine oil.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).