{"title":"Wirksamkeit des fäkalen Mikrobiota-Transfers bei systemischem Lupus erythematodes","authors":"I. Blumenstein","doi":"10.1159/000527288","DOIUrl":null,"url":null,"abstract":"Gut microbiota dysbiosis is involved in the development of systemic lupus erythematosus (SLE). The safety and efficacy of fecal microbiota transplantation (FMT) for the treatment of SLE patients has not been explored. In this 12-week, single-arm pilot clinical trial of oral encapsulated fecal microbiome from healthy donors to patients with active SLE, we aimed to evaluate the safety and efficacy of FMT in patients with SLE (ChiCTR2000036352). 20 SLE patients with SLEDAI ≥6 were recruited. FMT was administered once a week for three consecutive weeks along with standard treatment and the patients were followed for 12 weeks. Safety was evaluated throughout the trial. The primary endpoint was the SLE Responder Index-4 (SRI-4) at week 12. Microbiome composition, levels of short chain fatty acids (SCFAs) in the gut and of cytokines in the sera were measured along with lymphocyte phenotyping. No serious adverse events were observed after FMT. At week 12, the SRI-4 response rate was 42.12%, and significant reductions in the SLEDAI-2K scores and the level of serum anti-dsDNA antibody were observed compared to baseline. Significant enrichment of SCFAs-producing bacterial taxa and reduction of inflammation-related bacterial taxa were observed, along with increased production of SCFAs in the gut and reduced levels of IL-6 and CD4+ memory/naïve ratio in the peripheral blood. Furthermore, SRI-4 responding patients displayed specific microbiota signatures both before and after FMT. The first clinical trial of FMT in active SLE patients provides supportive evidence that FMT might be a feasible, safe, and potentially effective therapy in SLE patients by modifying the gut microbiome and its metabolic profile.","PeriodicalId":17887,"journal":{"name":"Kompass Autoimmun","volume":"90 1","pages":"177 - 179"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompass Autoimmun","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000527288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiota dysbiosis is involved in the development of systemic lupus erythematosus (SLE). The safety and efficacy of fecal microbiota transplantation (FMT) for the treatment of SLE patients has not been explored. In this 12-week, single-arm pilot clinical trial of oral encapsulated fecal microbiome from healthy donors to patients with active SLE, we aimed to evaluate the safety and efficacy of FMT in patients with SLE (ChiCTR2000036352). 20 SLE patients with SLEDAI ≥6 were recruited. FMT was administered once a week for three consecutive weeks along with standard treatment and the patients were followed for 12 weeks. Safety was evaluated throughout the trial. The primary endpoint was the SLE Responder Index-4 (SRI-4) at week 12. Microbiome composition, levels of short chain fatty acids (SCFAs) in the gut and of cytokines in the sera were measured along with lymphocyte phenotyping. No serious adverse events were observed after FMT. At week 12, the SRI-4 response rate was 42.12%, and significant reductions in the SLEDAI-2K scores and the level of serum anti-dsDNA antibody were observed compared to baseline. Significant enrichment of SCFAs-producing bacterial taxa and reduction of inflammation-related bacterial taxa were observed, along with increased production of SCFAs in the gut and reduced levels of IL-6 and CD4+ memory/naïve ratio in the peripheral blood. Furthermore, SRI-4 responding patients displayed specific microbiota signatures both before and after FMT. The first clinical trial of FMT in active SLE patients provides supportive evidence that FMT might be a feasible, safe, and potentially effective therapy in SLE patients by modifying the gut microbiome and its metabolic profile.