Modelling students’ career indicators via mixtures of parsimonious matrix-normal distributions

Pub Date : 2022-02-10 DOI:10.1111/anzs.12351
Salvatore D. Tomarchio, Salvatore Ingrassia, Volodymyr Melnykov
{"title":"Modelling students’ career indicators via mixtures of parsimonious matrix-normal distributions","authors":"Salvatore D. Tomarchio,&nbsp;Salvatore Ingrassia,&nbsp;Volodymyr Melnykov","doi":"10.1111/anzs.12351","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The evaluation of the teaching efficiency, under different points of view, is an important aspect for the university system because it helps managers to improve more and more the quality of the education and helps students to achieve strong professional skills. In this framework, students’ careers as well as teachers’ qualification and quantity adequacy indicators are analysed based on data sets provided by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) according to a mixture model approach. In particular, parsimonious mixtures of matrix-normal distributions are used to detect underlying grouping structures. The results show that the data present an underlying group structure of courses having different traits, thus providing useful information for the university policy makers.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The evaluation of the teaching efficiency, under different points of view, is an important aspect for the university system because it helps managers to improve more and more the quality of the education and helps students to achieve strong professional skills. In this framework, students’ careers as well as teachers’ qualification and quantity adequacy indicators are analysed based on data sets provided by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) according to a mixture model approach. In particular, parsimonious mixtures of matrix-normal distributions are used to detect underlying grouping structures. The results show that the data present an underlying group structure of courses having different traits, thus providing useful information for the university policy makers.

分享
查看原文
通过简洁矩阵-正态分布的混合模型对学生的职业指标进行建模
从不同的角度来看,教学效率的评估是大学系统的一个重要方面,因为它有助于管理者越来越多地提高教育质量,帮助学生获得强大的专业技能。在这个框架中,学生的职业生涯以及教师的资格和数量充足性指标是根据意大利国家大学和研究所评估机构(ANVUR)根据混合模型方法提供的数据集进行分析的。特别是,使用矩阵-正态分布的简约混合来检测潜在的分组结构。结果表明,这些数据显示了具有不同特征的课程的潜在群体结构,从而为大学决策者提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信