Transmission of harmonic functions through quasicircles on compact Riemann surfaces

IF 0.9 4区 数学 Q2 Mathematics
Eric Schippers, W. Staubach
{"title":"Transmission of harmonic functions through quasicircles on compact Riemann surfaces","authors":"Eric Schippers, W. Staubach","doi":"10.5186/aasfm.2020.4559","DOIUrl":null,"url":null,"abstract":"Let $R$ be a compact surface and let $Γ$ be a Jordan curve which separates $R$ into two connected components $Σ_1$ and $Σ_2$. A harmonic function $h_1$ on $Σ_1$ of bounded Dirichlet norm has boundary values $H$ in a certain conformally invariant non-tangential sense on $Γ$. We show that if $Γ$ is a quasicircle, then there is a unique harmonic function $h_2$ of bounded Dirichlet norm on $Σ_2$ whose boundary values agree with those of $h_1$. Furthermore, the resulting map from the Dirichlet space of $Σ_1$ into $Σ_2$ is bounded with respect to the Dirichlet semi-norm.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4559","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Let $R$ be a compact surface and let $Γ$ be a Jordan curve which separates $R$ into two connected components $Σ_1$ and $Σ_2$. A harmonic function $h_1$ on $Σ_1$ of bounded Dirichlet norm has boundary values $H$ in a certain conformally invariant non-tangential sense on $Γ$. We show that if $Γ$ is a quasicircle, then there is a unique harmonic function $h_2$ of bounded Dirichlet norm on $Σ_2$ whose boundary values agree with those of $h_1$. Furthermore, the resulting map from the Dirichlet space of $Σ_1$ into $Σ_2$ is bounded with respect to the Dirichlet semi-norm.
紧致黎曼曲面上谐波函数通过准圆的传输
设$R$为紧曲面,$Γ$为约当曲线,它将$R$分成两个相连的分量$Σ_1$和$Σ_2$。有界Dirichlet范数$Σ_1$上的调和函数$h_1$在$Γ$上具有一定保形不变非切向意义上的边值$H$。证明了如果$Γ$是一个准圆,则在$Σ_2$上存在一个唯一的具有有界Dirichlet范数的调和函数$h_2$,其边值与$h_1$的边值一致。更进一步,从$Σ_1$的狄利克雷空间到$Σ_2$的映射结果是关于狄利克雷半范数有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信