Modeling Individual and Team Behavior through Spatio-temporal Analysis

Sabbir Ahmad, Andy Bryant, Erica Kleinman, Zhaoqing Teng, Truong-Huy D. Nguyen, M. S. El-Nasr
{"title":"Modeling Individual and Team Behavior through Spatio-temporal Analysis","authors":"Sabbir Ahmad, Andy Bryant, Erica Kleinman, Zhaoqing Teng, Truong-Huy D. Nguyen, M. S. El-Nasr","doi":"10.1145/3311350.3347188","DOIUrl":null,"url":null,"abstract":"Modeling players' behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Wrapping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: BoomTown, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.","PeriodicalId":92838,"journal":{"name":"Proceedings of the ... Annual Symposium on Computer-Human Interaction in Play. ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Annual Symposium on Computer-Human Interaction in Play. ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3311350.3347188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Modeling players' behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Wrapping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: BoomTown, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.
基于时空分析的个体和团队行为建模
在过去的几年里,模拟玩家在游戏中的行为得到了越来越多的关注。这一研究领域具有广泛的应用,包括建模学习者和理解玩家策略等。在本文中,我们提出了一种新的方法,称为交互式行为分析(IBA),它由两个可视化系统、一个标记机制和使用动态时间包裹和聚类算法的抽象算法组成。该方法被封装在一个无缝接口中,以方便从游戏数据中发现知识。我们用两款多人团队游戏(游戏邦注:分别是由Gallup开发的《BoomTown》和《DotA 2》)的数据来证明这种方法的使用。这项工作的结果显示了这种方法在建模和开发团队和个人行为的人类可解释模型方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信