On the Constant in the Average Digit Sum for a Recurrence-Based Numeration

C. Ballot
{"title":"On the Constant in the Average Digit Sum for a Recurrence-Based Numeration","authors":"C. Ballot","doi":"10.1515/udt-2016-0016","DOIUrl":null,"url":null,"abstract":"Abstract Given an integral, increasing, linear-recurrent sequence A with initial term 1, the greedy algorithm may be used on the terms of A to represent all positive integers. For large classes of recurrences, the average digit sum is known to equal cA log n+O(1), where cA is a positive constant that depends on A. This asymptotic result is re-proved with an elementary approach for a class of special recurrences larger than, or distinct from, that of former papers. The focus is on the constants cA for which, among other items, explicit formulas are provided and minimal values are found, or conjectured, for all special recurrences up to a certain order.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"26 1","pages":"125 - 150"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2016-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Given an integral, increasing, linear-recurrent sequence A with initial term 1, the greedy algorithm may be used on the terms of A to represent all positive integers. For large classes of recurrences, the average digit sum is known to equal cA log n+O(1), where cA is a positive constant that depends on A. This asymptotic result is re-proved with an elementary approach for a class of special recurrences larger than, or distinct from, that of former papers. The focus is on the constants cA for which, among other items, explicit formulas are provided and minimal values are found, or conjectured, for all special recurrences up to a certain order.
基于递归计数的平均数字和中的常数
摘要给定一个初始项为1的递增线性循环序列A,贪心算法可以用来表示A上的所有正整数。对于大型递归类,已知平均数字和等于cA log n+O(1),其中cA是一个依赖于a的正常数。对于大于或不同于先前论文的一类特殊递归,我们用初等方法重新证明了这一渐近结果。重点放在常数cA上,除了其他项目外,还为这些常数提供了显式公式,并为所有特殊递归找到或推测出最小值,直至某个顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信