Residual Concatenated Network for ODBTC Image Restoration

A. Wicaksono, Heri Prasetyo, Jing-Ming Guo
{"title":"Residual Concatenated Network for ODBTC Image Restoration","authors":"A. Wicaksono, Heri Prasetyo, Jing-Ming Guo","doi":"10.1109/ISPACS48206.2019.8986408","DOIUrl":null,"url":null,"abstract":"This paper proposes Residual Concatenated Network (RCN) for improving the quality of Ordered Dither Block Truncation Coding (ODBTC) decoded image. This method inherits the effectiveness of Convolutional Neural Networks (CNN) for suppressing the impulsive noise occurred in decoded image. It suppresses the noise by applying a series of convolutional operations. The network directly performs learning process via an end-to-end mapping approach. The experimental results reveal that the proposed approach yields a promising result in the ODBTC image restoration.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"136 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes Residual Concatenated Network (RCN) for improving the quality of Ordered Dither Block Truncation Coding (ODBTC) decoded image. This method inherits the effectiveness of Convolutional Neural Networks (CNN) for suppressing the impulsive noise occurred in decoded image. It suppresses the noise by applying a series of convolutional operations. The network directly performs learning process via an end-to-end mapping approach. The experimental results reveal that the proposed approach yields a promising result in the ODBTC image restoration.
用于ODBTC图像恢复的剩余连接网络
为了提高有序抖动块截断编码(ODBTC)解码图像的质量,提出了残差连接网络(RCN)。该方法继承了卷积神经网络(CNN)抑制解码图像中出现的脉冲噪声的有效性。它通过应用一系列卷积运算来抑制噪声。网络通过端到端映射的方式直接完成学习过程。实验结果表明,该方法在ODBTC图像恢复中取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信