Flexible molecular docking: application of hybrid tabu-simplex optimisation

G. Khensous, B. Messabih, Abdallah Chouarfia, B. Maigret
{"title":"Flexible molecular docking: application of hybrid tabu-simplex optimisation","authors":"G. Khensous, B. Messabih, Abdallah Chouarfia, B. Maigret","doi":"10.1504/IJCBDD.2019.098178","DOIUrl":null,"url":null,"abstract":"In this paper, we present a molecular docking method to predict the optimal binding pose of a flexible ligand in a flexible protein-binding pocket. For this purpose, a Tabu global search optimization algorithm is used, and the best Tabu solutions are then refined using the Nelder-Mead Simplex local search optimization algorithm. Most docking methods use scoring functions to approximate the binding affinity between the two molecular partners. In our application, the intra-molecular and intermolecular energies are calculated explicitly from a classical molecular mechanics model, which includes polarization terms. The variables of our optimization problem are the ligand positions (Euler angles + translation vector), the ligand and the protein side chains dihedral angles instead of the Cartesian coordinates in order to reduce the problem dimensionality. While the GOLD software (GOLD for Genetic Optimization for Ligand Docking) is usually considered as a standard in molecular docking, our docking approach is illustrated on four protein/ligand complexes for which GOLD failed, suggesting that the proposed method is promising.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"1 1","pages":"34-53"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2019.098178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a molecular docking method to predict the optimal binding pose of a flexible ligand in a flexible protein-binding pocket. For this purpose, a Tabu global search optimization algorithm is used, and the best Tabu solutions are then refined using the Nelder-Mead Simplex local search optimization algorithm. Most docking methods use scoring functions to approximate the binding affinity between the two molecular partners. In our application, the intra-molecular and intermolecular energies are calculated explicitly from a classical molecular mechanics model, which includes polarization terms. The variables of our optimization problem are the ligand positions (Euler angles + translation vector), the ligand and the protein side chains dihedral angles instead of the Cartesian coordinates in order to reduce the problem dimensionality. While the GOLD software (GOLD for Genetic Optimization for Ligand Docking) is usually considered as a standard in molecular docking, our docking approach is illustrated on four protein/ligand complexes for which GOLD failed, suggesting that the proposed method is promising.
柔性分子对接:混合禁忌-单纯形优化的应用
在本文中,我们提出了一种分子对接方法来预测柔性配体在柔性蛋白质结合口袋中的最佳结合姿态。为此,使用Tabu全局搜索优化算法,然后使用Nelder-Mead Simplex局部搜索优化算法对最佳Tabu解进行细化。大多数对接方法使用评分函数来近似两个分子伴侣之间的结合亲和力。在我们的应用中,分子内和分子间的能量是由一个经典的分子力学模型明确地计算出来的,其中包括极化项。优化问题的变量为配体位置(欧拉角+平移向量)、配体与蛋白质侧链的二面角,以降低问题的维数。虽然GOLD软件(GOLD for Genetic Optimization for Ligand Docking)通常被认为是分子对接的标准,但我们的对接方法在四个GOLD失败的蛋白质/配体复合物上进行了说明,表明所提出的方法是有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信