Adlina Abdul Samad, Marina Md Arshad, M. Md. Siraj, Nur Aishah Shamsudin
{"title":"Visual Analytics Design for Students Assessment Representation based on Supervised Learning Algorithms","authors":"Adlina Abdul Samad, Marina Md Arshad, M. Md. Siraj, Nur Aishah Shamsudin","doi":"10.11113/ijic.v11n2.346","DOIUrl":null,"url":null,"abstract":"Visual Analytics is very effective in many applications especially in education field and improved the decision making on enhancing the student assessment. Student assessment has become very important and is identified as a systematic process that measures and collects data such as marks and scores in a manner that enables the educator to analyze the achievement of the intended learning outcomes. The objective of this study is to investigate the suitable visual analytics design to represent the student assessment data with the suitable interaction techniques of the visual analytics approach. sheet. There are six types of analytical models, such as the Generalized Linear Model, Deep Learning, Decision Tree Model, Random Forest Model, Gradient Boosted Model, and Support Vector Machine were used to conduct this research. Our experimental results show that the Decision Tree Models were the fastest way to optimize the result. The Gradient Boosted Model was the best performance to optimize the result.","PeriodicalId":50314,"journal":{"name":"International Journal of Innovative Computing Information and Control","volume":"25 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/ijic.v11n2.346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Visual Analytics is very effective in many applications especially in education field and improved the decision making on enhancing the student assessment. Student assessment has become very important and is identified as a systematic process that measures and collects data such as marks and scores in a manner that enables the educator to analyze the achievement of the intended learning outcomes. The objective of this study is to investigate the suitable visual analytics design to represent the student assessment data with the suitable interaction techniques of the visual analytics approach. sheet. There are six types of analytical models, such as the Generalized Linear Model, Deep Learning, Decision Tree Model, Random Forest Model, Gradient Boosted Model, and Support Vector Machine were used to conduct this research. Our experimental results show that the Decision Tree Models were the fastest way to optimize the result. The Gradient Boosted Model was the best performance to optimize the result.
期刊介绍:
The primary aim of the International Journal of Innovative Computing, Information and Control (IJICIC) is to publish high-quality papers of new developments and trends, novel techniques and approaches, innovative methodologies and technologies on the theory and applications of intelligent systems, information and control. The IJICIC is a peer-reviewed English language journal and is published bimonthly