Low complexity hybrid precoding for mmWave Massive MIMO systems

Yueyun Chen, Yanqing Xia, Yaxin Xing, Liuqing Yang
{"title":"Low complexity hybrid precoding for mmWave Massive MIMO systems","authors":"Yueyun Chen, Yanqing Xia, Yaxin Xing, Liuqing Yang","doi":"10.1109/WOCC.2017.7929004","DOIUrl":null,"url":null,"abstract":"Massive MIMO has the advantage of providing excellent multiplexing/diversity gain and data rate due to the large antenna array equipped at the BS or UEs. However, the high hardware cost and computational complexity limit the practical implementation of large antenna array. In this paper, we formulate a Minimum Mean Square Error (MMSE) based optimization model under the partially-connected structure to reduce the hardware cost, and propose a low complexity hybrid precoding algorithm based on the Particle Swarm Ant Colony Optimization (HP-PSACO). Simulation results show that the proposed algorithm with low computational complexity achieves higher energy efficiency than the fully digital baseband precoding.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7929004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Massive MIMO has the advantage of providing excellent multiplexing/diversity gain and data rate due to the large antenna array equipped at the BS or UEs. However, the high hardware cost and computational complexity limit the practical implementation of large antenna array. In this paper, we formulate a Minimum Mean Square Error (MMSE) based optimization model under the partially-connected structure to reduce the hardware cost, and propose a low complexity hybrid precoding algorithm based on the Particle Swarm Ant Colony Optimization (HP-PSACO). Simulation results show that the proposed algorithm with low computational complexity achieves higher energy efficiency than the fully digital baseband precoding.
毫米波大规模MIMO系统的低复杂度混合预编码
大规模MIMO的优点是,由于在基站或终端上配备了大型天线阵列,因此可以提供出色的多路/分集增益和数据速率。然而,高昂的硬件成本和计算复杂度限制了大型天线阵的实际实现。为了降低硬件成本,本文建立了部分连接结构下基于最小均方误差(MMSE)的优化模型,并提出了一种基于粒子群蚁群优化(HP-PSACO)的低复杂度混合预编码算法。仿真结果表明,该算法具有较低的计算复杂度,比全数字基带预编码具有更高的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信