Orientation Invariant Feature Embedding and Spatial Temporal Regularization for Vehicle Re-identification

Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao, Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hongsheng Li, Xiaogang Wang
{"title":"Orientation Invariant Feature Embedding and Spatial Temporal Regularization for Vehicle Re-identification","authors":"Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao, Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hongsheng Li, Xiaogang Wang","doi":"10.1109/ICCV.2017.49","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the vehicle Re-identification (ReID) problem which is of great importance in urban surveillance and can be used for multiple applications. In our vehicle ReID framework, an orientation invariant feature embedding module and a spatial-temporal regularization module are proposed. With orientation invariant feature embedding, local region features of different orientations can be extracted based on 20 key point locations and can be well aligned and combined. With spatial-temporal regularization, the log-normal distribution is adopted to model the spatial-temporal constraints and the retrieval results can be refined. Experiments are conducted on public vehicle ReID datasets and our proposed method achieves state-of-the-art performance. Investigations of the proposed framework is conducted, including the landmark regressor and comparisons with attention mechanism. Both the orientation invariant feature embedding and the spatio-temporal regularization achieve considerable improvements.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"29 1","pages":"379-387"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"314","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 314

Abstract

In this paper, we tackle the vehicle Re-identification (ReID) problem which is of great importance in urban surveillance and can be used for multiple applications. In our vehicle ReID framework, an orientation invariant feature embedding module and a spatial-temporal regularization module are proposed. With orientation invariant feature embedding, local region features of different orientations can be extracted based on 20 key point locations and can be well aligned and combined. With spatial-temporal regularization, the log-normal distribution is adopted to model the spatial-temporal constraints and the retrieval results can be refined. Experiments are conducted on public vehicle ReID datasets and our proposed method achieves state-of-the-art performance. Investigations of the proposed framework is conducted, including the landmark regressor and comparisons with attention mechanism. Both the orientation invariant feature embedding and the spatio-temporal regularization achieve considerable improvements.
车辆再识别的方向不变特征嵌入与时空正则化
车辆再识别(ReID)是城市监控中一个非常重要的问题,可用于多种应用。在车辆ReID框架中,提出了方向不变特征嵌入模块和时空正则化模块。通过方向不变特征嵌入,可以基于20个关键点位置提取不同方向的局部区域特征,并可以很好地对齐和组合。通过时空正则化,采用对数正态分布对时空约束进行建模,使检索结果更加精细化。在公共车辆ReID数据集上进行了实验,我们提出的方法达到了最先进的性能。对所提出的框架进行了研究,包括里程碑回归量和与注意机制的比较。方向不变特征嵌入和时空正则化都得到了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信