{"title":"Path Following for the Soft Origami Crawling Robot","authors":"O. Angatkina, K. Gustafson, A. Wissa, A. Alleyne","doi":"10.1115/dscc2019-9175","DOIUrl":null,"url":null,"abstract":"Extensive growth of the soft robotics field has made possible the application of soft mobile robots for real world tasks such as search and rescue missions. Soft robots provide safer interactions with humans when compared to traditional rigid robots. Additionally, soft robots often contain more degrees of freedom than rigid ones, which can be beneficial for applications where increased mobility is needed. However, the limited number of studies for the autonomous navigation of soft robots currently restricts their application for missions such as search and rescue. This paper presents a path following technique for a compliant origami crawling robot. The path following control adapts the well-known pure pursuit method to account for the geometric and mobility constraints of the robot. The robot motion is described by a kinematic model that transforms the outputs of the pure pursuit into the servo input rotations for the robot. This model consists of two integrated sub-models: a lumped kinematic model and a segmented kinematic model. The performance of the path following approach is demonstrated for a straight-line following simulation with initial offset. Finally, a feedback controller is designed to account for terrain or mission uncertainties.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Extensive growth of the soft robotics field has made possible the application of soft mobile robots for real world tasks such as search and rescue missions. Soft robots provide safer interactions with humans when compared to traditional rigid robots. Additionally, soft robots often contain more degrees of freedom than rigid ones, which can be beneficial for applications where increased mobility is needed. However, the limited number of studies for the autonomous navigation of soft robots currently restricts their application for missions such as search and rescue. This paper presents a path following technique for a compliant origami crawling robot. The path following control adapts the well-known pure pursuit method to account for the geometric and mobility constraints of the robot. The robot motion is described by a kinematic model that transforms the outputs of the pure pursuit into the servo input rotations for the robot. This model consists of two integrated sub-models: a lumped kinematic model and a segmented kinematic model. The performance of the path following approach is demonstrated for a straight-line following simulation with initial offset. Finally, a feedback controller is designed to account for terrain or mission uncertainties.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.