Synthesis and Characterization of Polymeric Surfactant from Palm Oil Methyl Ester and Vinyl Acetate for Chemical Flooding

Agam Duma Kalista Wibowo, Pina Tiani, L. Aditya, A. S. Handayani, M. Christwardana
{"title":"Synthesis and Characterization of Polymeric Surfactant from Palm Oil Methyl Ester and Vinyl Acetate for Chemical Flooding","authors":"Agam Duma Kalista Wibowo, Pina Tiani, L. Aditya, A. S. Handayani, M. Christwardana","doi":"10.14710/reaktor.21.2.65-73","DOIUrl":null,"url":null,"abstract":"Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/reaktor.21.2.65-73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate
棕榈油甲酯和醋酸乙烯酯化学驱用聚合表面活性剂的合成与表征
提高采收率的表面活性剂一般由不可再生的石油磺酸盐制成,价格相对昂贵,因此有必要合成可再生的、环保的生物基表面活性剂。表面活性剂溶液可以降低油与水之间的界面张力(IFT),而醋酸乙烯单体具有增加粘度的能力,可以控制流动性。因此,聚合物表面活性剂在降低油/水IFT的同时,具有提高水溶液粘度的双重作用。结果表明,聚合物表面活性剂的临界胶束浓度(CMC)为0.5%,IFT为7.72 × 10-2 mN/m。合成聚合表面活性剂时,磺酸甲酯与醋酸乙烯酯的最佳摩尔比为1:0.5,IFT为6.7 × 10-3 mN/m。用FTIR和HNMR对产物进行了表征,证明了聚合物表面活性剂的产生。通过润湿性变化研究,证实了该产品具有从最初的油湿型向水湿型转变的能力。综上所述,该聚合物表面活性剂具有超低的IFT,可作为化学驱的替代表面活性剂,其IFT值在10-2 ~ 10-3 mN/m范围内满足化学驱的要求。关键词:提高采收率,界面张力,甲酯磺酸盐,聚合表面活性剂,醋酸乙烯酯
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信