{"title":"A 4ps amplitude reconfigurable impulse radiator with THz-TDS characterization method in 0.13µm SiGe BiCMOS","authors":"Peiyu Chen, Yiqiu Wang, A. Babakhani","doi":"10.1109/MWSYM.2016.7540210","DOIUrl":null,"url":null,"abstract":"This paper reports a fully integrated impulse radiator with the capability of radiating impulses with 4ps FWHM and reconfigurable amplitude. The peak radiated power at 54GHz is 8.7dBm with a 13.6dBm peak EIRP. A Non-Linear Q-Switching Impedance (NLQSI) technique is introduced to generate impulses and control their amplitudes. Furthermore, a two-bit impulse amplitude modulation is achieved through an on-chip four-way impulse combiner, which also attenuates parasitic-induced low-frequency radiation. In addition to performing frequency-domain measurements, for the first time, an ultra-wideband THz Time-Domain Spectroscopy (THz-TDS) system is utilized to characterize the radiated signal in time-domain. The radiated impulse has an SNR>1 bandwidth of more than 160GHz. The fully-integrated impulse radiator is implemented in a 0.13μm SiGe BiCMOS process. It has a die area of 1mm2 and it consumes 170mW.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"102 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper reports a fully integrated impulse radiator with the capability of radiating impulses with 4ps FWHM and reconfigurable amplitude. The peak radiated power at 54GHz is 8.7dBm with a 13.6dBm peak EIRP. A Non-Linear Q-Switching Impedance (NLQSI) technique is introduced to generate impulses and control their amplitudes. Furthermore, a two-bit impulse amplitude modulation is achieved through an on-chip four-way impulse combiner, which also attenuates parasitic-induced low-frequency radiation. In addition to performing frequency-domain measurements, for the first time, an ultra-wideband THz Time-Domain Spectroscopy (THz-TDS) system is utilized to characterize the radiated signal in time-domain. The radiated impulse has an SNR>1 bandwidth of more than 160GHz. The fully-integrated impulse radiator is implemented in a 0.13μm SiGe BiCMOS process. It has a die area of 1mm2 and it consumes 170mW.