Nonholonomic Robot Navigation of Mazes using Reinforcement Learning

Danielle K. Gleason, Michael Jenkin
{"title":"Nonholonomic Robot Navigation of Mazes using Reinforcement Learning","authors":"Danielle K. Gleason, Michael Jenkin","doi":"10.5220/0011123600003271","DOIUrl":null,"url":null,"abstract":": Developing a navigation function for an unknown environment is a difficult task, made even more challenging when the environment has complex structure and the robot imposes nonholonomic constraints on the problem. Here we pose the problem of navigating an unknown environment as a reinforcement learning task for an Ackermann vehicle. We model environmental complexity using a standard characterization of mazes, and we show that training on complex maze architectures with loops (braid and partial braid mazes) results in an effective policy, but that for a more efficient policy, training on mazes without loops (perfect mazes) is to be preferred. Experimental results obtained in simulation are validated on a real robot operating both indoors and outdoors, assuming good localization and a 2D LIDAR to recover the local structure of the environment.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"23 1","pages":"369-376"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011123600003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Developing a navigation function for an unknown environment is a difficult task, made even more challenging when the environment has complex structure and the robot imposes nonholonomic constraints on the problem. Here we pose the problem of navigating an unknown environment as a reinforcement learning task for an Ackermann vehicle. We model environmental complexity using a standard characterization of mazes, and we show that training on complex maze architectures with loops (braid and partial braid mazes) results in an effective policy, but that for a more efficient policy, training on mazes without loops (perfect mazes) is to be preferred. Experimental results obtained in simulation are validated on a real robot operating both indoors and outdoors, assuming good localization and a 2D LIDAR to recover the local structure of the environment.
基于强化学习的非完整机器人迷宫导航
为未知环境开发导航功能是一项艰巨的任务,当环境结构复杂且机器人对问题施加非完整约束时,就更具挑战性了。在这里,我们将导航未知环境的问题作为阿克曼车辆的强化学习任务。我们使用迷宫的标准特征来模拟环境复杂性,并且我们表明,对具有环路的复杂迷宫结构(辫状和部分辫状迷宫)进行训练可以产生有效的策略,但对于更有效的策略,更倾向于对没有环路的迷宫(完美迷宫)进行训练。在室内和室外操作的真实机器人上验证了仿真得到的实验结果,假设良好的定位和2D激光雷达可以恢复环境的局部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信