Gaussian density guided deep neural network for single-channel speech enhancement

Li Chai, Jun Du, Yannan Wang
{"title":"Gaussian density guided deep neural network for single-channel speech enhancement","authors":"Li Chai, Jun Du, Yannan Wang","doi":"10.1109/MLSP.2017.8168116","DOIUrl":null,"url":null,"abstract":"Recently, the minimum mean squared error (MMSE) has been a benchmark of optimization criterion for deep neural network (DNN) based speech enhancement. In this study, a probabilistic learning framework to estimate the DNN parameters for single-channel speech enhancement is proposed. First, the statistical analysis shows that the prediction error vector at the DNN output well follows a unimodal density for each log-power spectral component. Accordingly, we present a maximum likelihood (ML) approach to DNN parameter learning by charactering the prediction error vector as a multivariate Gaussian density with a zero mean vector and an unknown covariance matrix. It is demonstrated that the proposed learning approach can achieve a better generalization capability than MMSE-based DNN learning for unseen noise types, which can significantly reduce the speech distortions in low SNR environments.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Recently, the minimum mean squared error (MMSE) has been a benchmark of optimization criterion for deep neural network (DNN) based speech enhancement. In this study, a probabilistic learning framework to estimate the DNN parameters for single-channel speech enhancement is proposed. First, the statistical analysis shows that the prediction error vector at the DNN output well follows a unimodal density for each log-power spectral component. Accordingly, we present a maximum likelihood (ML) approach to DNN parameter learning by charactering the prediction error vector as a multivariate Gaussian density with a zero mean vector and an unknown covariance matrix. It is demonstrated that the proposed learning approach can achieve a better generalization capability than MMSE-based DNN learning for unseen noise types, which can significantly reduce the speech distortions in low SNR environments.
基于高斯密度的深度神经网络单通道语音增强
近年来,最小均方误差(MMSE)已成为基于深度神经网络(DNN)的语音增强优化准则的基准。在本研究中,提出了一种估计单通道语音增强的深度神经网络参数的概率学习框架。首先,统计分析表明,DNN输出处的预测误差向量很好地遵循每个对数功率谱分量的单峰密度。因此,我们通过将预测误差向量表征为具有零均值向量和未知协方差矩阵的多元高斯密度,提出了DNN参数学习的最大似然(ML)方法。实验结果表明,该学习方法比基于mmse的深度神经网络学习方法具有更好的泛化能力,可以显著降低低信噪比环境下的语音失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信