A novel O(1) parallel deadlock detection algorithm and architecture for multi-unit resource systems

Xiang Xiao, J. Lee
{"title":"A novel O(1) parallel deadlock detection algorithm and architecture for multi-unit resource systems","authors":"Xiang Xiao, J. Lee","doi":"10.1109/ICCD.2007.4601942","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel O(1) parallel deadlock detection approach for multi-unit resource system-on-a-chips (SoCs), inspired by Kimpsilas method in O(1) detection as well as Shiupsilas method in parallel processing. Our contributions are (i) the first O(1) hardware deadlock detection and (ii) O(min(m, n)) preparation, both for multi-unit resource systems, where m and n are the number of processes and resources, respectively. O(min(m, n)), previously O(m times n), is achieved by performing all the searches for sink nodes for each and every resource in parallel in hardware over a matrix representing resource allocations as well as other auxiliary matrices. Our experiments demonstrate that deadlock detection always takes two clock cycles.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"12 1","pages":"480-487"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper introduces a novel O(1) parallel deadlock detection approach for multi-unit resource system-on-a-chips (SoCs), inspired by Kimpsilas method in O(1) detection as well as Shiupsilas method in parallel processing. Our contributions are (i) the first O(1) hardware deadlock detection and (ii) O(min(m, n)) preparation, both for multi-unit resource systems, where m and n are the number of processes and resources, respectively. O(min(m, n)), previously O(m times n), is achieved by performing all the searches for sink nodes for each and every resource in parallel in hardware over a matrix representing resource allocations as well as other auxiliary matrices. Our experiments demonstrate that deadlock detection always takes two clock cycles.
一种新的多单元资源系统O(1)并行死锁检测算法及体系结构
本文在借鉴Kimpsilas方法和Shiupsilas方法的基础上,提出了一种适用于多单元资源片上系统(soc)的O(1)并行死锁检测方法。我们的贡献是:(i)第一个O(1)硬件死锁检测和(ii) O(min(m, n))准备,两者都适用于多单元资源系统,其中m和n分别是进程和资源的数量。O(min(m, n)),以前是O(m乘以n),通过在表示资源分配和其他辅助矩阵的矩阵上并行执行硬件中每个资源的汇聚节点的所有搜索来实现。我们的实验表明,死锁检测总是需要两个时钟周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信