Fitting Time-varying Coefficients SEIRD Model to COVID-19 Cases in Malaysia

IF 1.3 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Norsyahidah Zulkarnain, Muhammad Salihi Abdul Hadi, N. Mohammad, I. Shogar
{"title":"Fitting Time-varying Coefficients SEIRD Model to COVID-19 Cases in Malaysia","authors":"Norsyahidah Zulkarnain, Muhammad Salihi Abdul Hadi, N. Mohammad, I. Shogar","doi":"10.11113/ijic.v13n1.397","DOIUrl":null,"url":null,"abstract":"This paper proposes a compartmental Susceptible-Exposed-Infected-Recovered-Death (SEIRD) model for COVID-19 cases in Malaysia. This extended model is more relevant to describe the disease transmission than the SIRD model since the exposed (E) compartment represents individuals in the disease's incubation period. The mathematical model is a system of ordinary differential equations (ODEs) with time-varying coefficients as opposed to the conventional model with constant coefficients. This time dependency treatment is necessary as the epidemiological parameters such as infection rate β, recovery rate γ, and death rate μ usually change over time. However, this feature leads to an increasing number of unknowns needed to be solved to fit the model with the actual data. Several optimization algorithms under Python’s LMfit package, such as Levenberg-Marquardt, Nelder-Mead, Trust-Region Reflective and Sequential Linear Squares Programming; are employed to estimate the related parameters, in such that the numerical solution of the ODEs will fit the data with the slightest error. Nelder-Mead outperforms the other optimization algorithm with the least error. Qualitatively, the result shows that the proportion of the quarantine rule-abiding population should be maintained up to 90% to ensure Malaysia successfully reaches disease-free or endemic equilibrium.","PeriodicalId":50314,"journal":{"name":"International Journal of Innovative Computing Information and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/ijic.v13n1.397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a compartmental Susceptible-Exposed-Infected-Recovered-Death (SEIRD) model for COVID-19 cases in Malaysia. This extended model is more relevant to describe the disease transmission than the SIRD model since the exposed (E) compartment represents individuals in the disease's incubation period. The mathematical model is a system of ordinary differential equations (ODEs) with time-varying coefficients as opposed to the conventional model with constant coefficients. This time dependency treatment is necessary as the epidemiological parameters such as infection rate β, recovery rate γ, and death rate μ usually change over time. However, this feature leads to an increasing number of unknowns needed to be solved to fit the model with the actual data. Several optimization algorithms under Python’s LMfit package, such as Levenberg-Marquardt, Nelder-Mead, Trust-Region Reflective and Sequential Linear Squares Programming; are employed to estimate the related parameters, in such that the numerical solution of the ODEs will fit the data with the slightest error. Nelder-Mead outperforms the other optimization algorithm with the least error. Qualitatively, the result shows that the proportion of the quarantine rule-abiding population should be maintained up to 90% to ensure Malaysia successfully reaches disease-free or endemic equilibrium.
马来西亚新冠肺炎病例时变系数SEIRD模型拟合
本文提出了针对马来西亚COVID-19病例的分区易感-暴露-感染-恢复-死亡(SEIRD)模型。这个扩展模型比SIRD模型更适合于描述疾病传播,因为暴露(E)隔室代表处于疾病潜伏期的个体。该数学模型是一个具有时变系数的常微分方程(ode)系统,而不是传统的常系数模型。这种时间依赖性治疗是必要的,因为流行病学参数如感染率β、康复率γ和死亡率μ通常随时间而变化。然而,这一特征导致需要解决越来越多的未知数,以便将模型与实际数据拟合。Python LMfit包下的几种优化算法,如Levenberg-Marquardt、Nelder-Mead、Trust-Region Reflective和Sequential Linear Squares Programming;的方法来估计相关参数,从而使ode的数值解能以最小的误差拟合数据。Nelder-Mead以最小的误差优于其他优化算法。定性地说,结果表明,遵守检疫规则的人口比例应保持高达90%,以确保马来西亚成功达到无病或地方病平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
20.00%
发文量
0
审稿时长
4.3 months
期刊介绍: The primary aim of the International Journal of Innovative Computing, Information and Control (IJICIC) is to publish high-quality papers of new developments and trends, novel techniques and approaches, innovative methodologies and technologies on the theory and applications of intelligent systems, information and control. The IJICIC is a peer-reviewed English language journal and is published bimonthly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信