Chebyshev’s bias for Ramanujan’s $\tau$-function via the Deep Riemann Hypothesis

Pub Date : 2022-03-24 DOI:10.3792/pjaa.98.007
S. Koyama, N. Kurokawa
{"title":"Chebyshev’s bias for Ramanujan’s $\\tau$-function via the Deep Riemann Hypothesis","authors":"S. Koyama, N. Kurokawa","doi":"10.3792/pjaa.98.007","DOIUrl":null,"url":null,"abstract":"The authors assume the Deep Riemann Hypothesis to prove that a weighted sum of Ramanujan’s τ -function has a bias to being positive. This phenomenon is an analogue of Chebyshev’s bias.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.98.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The authors assume the Deep Riemann Hypothesis to prove that a weighted sum of Ramanujan’s τ -function has a bias to being positive. This phenomenon is an analogue of Chebyshev’s bias.
分享
查看原文
Chebyshev对Ramanujan 's $\tau$-函数的偏差通过深度黎曼假设
为了证明Ramanujan τ -函数的加权和偏向于正,作者采用了深黎曼假设。这种现象类似于切比雪夫的偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信