Characteristics Analysis and Experimental Verification of Amorphous Metal Distribution Transformer Core Vibration Coupled by Electromagnetic - Mechanical Field

Jiacheng Li, Daosheng Liu, Peng Li
{"title":"Characteristics Analysis and Experimental Verification of Amorphous Metal Distribution Transformer Core Vibration Coupled by Electromagnetic - Mechanical Field","authors":"Jiacheng Li, Daosheng Liu, Peng Li","doi":"10.1109/ICEMPE51623.2021.9509074","DOIUrl":null,"url":null,"abstract":"With the requirement of high efficiency and low cost for distribution transformer, amorphous metal distribution transformer (AMDT), fabricated by employing amorphous alloy strip as the core, shows a great developmental potential in power equipment industry. However, due to the disadvantages of large magnetostriction and excessive sensitive to stress, the AMDT core can not be fully clamped, which leads to higher vibration magnitude than silicon steel one. The core vibration characteristic analysis environment is a typical multi-physical field, and many researchers tried to calculate the magnetic and dynamic parameters by FEA, but the simulation results are not convinced because of lacking experimental verification. In this paper, a 3-D model of AMDT core was established, and the magnetic flux density and electromagnetic force were calculated by coupling analysis of electromagnetic and mechanical field. To verify the simulation results, a vibration testing platform of the AMDT core was built, and the piezoelectric vibration acceleration sensor were adopted to obtain the vibration signals. The experiment results show that the vibration intensity at upper yoke is larger than other area, which is consistent with the simulation result.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the requirement of high efficiency and low cost for distribution transformer, amorphous metal distribution transformer (AMDT), fabricated by employing amorphous alloy strip as the core, shows a great developmental potential in power equipment industry. However, due to the disadvantages of large magnetostriction and excessive sensitive to stress, the AMDT core can not be fully clamped, which leads to higher vibration magnitude than silicon steel one. The core vibration characteristic analysis environment is a typical multi-physical field, and many researchers tried to calculate the magnetic and dynamic parameters by FEA, but the simulation results are not convinced because of lacking experimental verification. In this paper, a 3-D model of AMDT core was established, and the magnetic flux density and electromagnetic force were calculated by coupling analysis of electromagnetic and mechanical field. To verify the simulation results, a vibration testing platform of the AMDT core was built, and the piezoelectric vibration acceleration sensor were adopted to obtain the vibration signals. The experiment results show that the vibration intensity at upper yoke is larger than other area, which is consistent with the simulation result.
电磁场-机械场耦合下非晶金属配电变压器铁心振动特性分析及实验验证
随着人们对配电变压器效率高、成本低的要求,以非晶合金带材为芯材制造的非晶金属配电变压器在电力设备行业中显示出巨大的发展潜力。然而,由于AMDT铁芯的磁致伸缩大,对应力过于敏感,不能完全夹紧,导致其振动幅度高于硅钢铁芯。岩心振动特性分析环境是一个典型的多物理场,许多研究者试图通过有限元法计算磁学和动力学参数,但由于缺乏实验验证,仿真结果并不令人信服。本文建立了AMDT铁芯的三维模型,通过电磁场和机械场的耦合分析,计算了磁感应强度和电磁力。为了验证仿真结果,搭建了AMDT芯的振动测试平台,采用压电振动加速度传感器获取振动信号。实验结果表明,上轭架处的振动强度大于其他区域,与仿真结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信