Adaptive Model Predictive Control Using Diagonal Recurrent Neural Network

Yingyi Jin, Chengli Su
{"title":"Adaptive Model Predictive Control Using Diagonal Recurrent Neural Network","authors":"Yingyi Jin, Chengli Su","doi":"10.1109/ICNC.2008.575","DOIUrl":null,"url":null,"abstract":"A neural network-based model predictive control scheme is proposed for nonlinear systems. In this scheme an adaptive diagonal recurrent neural network (DRNN) is used for modeling of nonlinear processes. A recursive estimation algorithm using the extended Kalman filter (EKF) is proposed to calculate Jacobian matrix in the model adaptation so that the algorithm is simple and converges fast. Particle swarm optimization (PSO) is adopted to obtain optimal future control inputs over a prediction horizon, which overcomes effectively the shortcoming of descent-based nonlinear programming method on the initial condition sensitivity. A case study of biochemical fermentation process shows that the performance of the proposed control scheme is better than that of PI controller.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"21 1","pages":"276-280"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A neural network-based model predictive control scheme is proposed for nonlinear systems. In this scheme an adaptive diagonal recurrent neural network (DRNN) is used for modeling of nonlinear processes. A recursive estimation algorithm using the extended Kalman filter (EKF) is proposed to calculate Jacobian matrix in the model adaptation so that the algorithm is simple and converges fast. Particle swarm optimization (PSO) is adopted to obtain optimal future control inputs over a prediction horizon, which overcomes effectively the shortcoming of descent-based nonlinear programming method on the initial condition sensitivity. A case study of biochemical fermentation process shows that the performance of the proposed control scheme is better than that of PI controller.
基于对角循环神经网络的自适应模型预测控制
针对非线性系统,提出了一种基于神经网络的模型预测控制方法。该方案采用自适应对角递归神经网络(DRNN)对非线性过程进行建模。提出了一种基于扩展卡尔曼滤波(EKF)的递归估计算法来计算模型自适应中的雅可比矩阵,使算法简单,收敛速度快。采用粒子群算法(PSO)在预测范围内获得最优的未来控制输入,有效地克服了基于下降的非线性规划方法在初始条件敏感性方面的不足。以生化发酵过程为例进行了实验研究,结果表明所提出的控制方案的控制性能优于PI控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信