On Subspace-recurrent Operators

IF 0.7 Q2 MATHEMATICS
M. Moosapoor
{"title":"On Subspace-recurrent Operators","authors":"M. Moosapoor","doi":"10.5556/J.TKJM.53.2022.3579","DOIUrl":null,"url":null,"abstract":"In this article, subspace-recurrent operators are presented and it is showed that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent operators. We demonstrate that despite subspace-transitive operators and subspace-hypercyclic operators, subspace-recurrent operators exist on finite dimensional spaces. We establish that operators that have a dense set of periodic points are subspace-recurrent. Especially, if T is an invertible chaotic or an invertible subspace-chaotic operator, then T, T−n and λT are subspace-recurrent for any positive integer n and any scalar λ with absolute value 1. Also, we state a subspace-recurrence criterion.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.53.2022.3579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, subspace-recurrent operators are presented and it is showed that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent operators. We demonstrate that despite subspace-transitive operators and subspace-hypercyclic operators, subspace-recurrent operators exist on finite dimensional spaces. We establish that operators that have a dense set of periodic points are subspace-recurrent. Especially, if T is an invertible chaotic or an invertible subspace-chaotic operator, then T, T−n and λT are subspace-recurrent for any positive integer n and any scalar λ with absolute value 1. Also, we state a subspace-recurrence criterion.
关于子空间循环算子
本文给出了子空间递归算子,并证明了子空间传递算子集是子空间递归算子集的严格子集。证明了有限维空间上存在子空间递迁算子和子空间超循环算子。我们建立了具有密集周期点集合的算子是子空间循环的。特别地,如果T是可逆混沌算子或可逆子空间混沌算子,则T、T−n和λT对任意正整数n和绝对值为1的标量λ都是子空间循环算子。同时,给出了子空间递归准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信