André Cravinho, A. Jesus, Bruno Moreira, A. Mateus, B. Pracejus, J. Figueiras, M. Benoit, W. Bauer, F. Rocha
{"title":"Contrasting Features and Volcanostratigraphy of the Mafic-Hosted Mandoos and Shinas Volcanogenic Massive Sulfide Deposits, Samail Ophiolite, Oman","authors":"André Cravinho, A. Jesus, Bruno Moreira, A. Mateus, B. Pracejus, J. Figueiras, M. Benoit, W. Bauer, F. Rocha","doi":"10.5382/econgeo.5006","DOIUrl":null,"url":null,"abstract":"\n Despite the substantial amount of research on the Cretaceous Samail ophiolite in Oman, the factors controlling the size and metal endowment of the mafic-hosted, Cu-Au(-Zn-Ag) volcanogenic massive sulfide (VMS) deposits remain elusive. This work shows that the volcanostratigraphic position, hydrothermal venting style, and oxidation processes are critical factors controlling the distinct features of the Shinas and Mandoos deposits.\n Mandoos is a large (8 Mt, 1.8 wt % Cu, 0.18 g/ton Au) orebody preserving abundant primary vent-related features formed via mound growth and collapse within a wide hydrothermal field, overlying a poorly developed stockwork. The smaller Shinas deposit (0.8 Mt, 2.6 wt % Cu, 0.63 g/t Au) represents a higher-temperature system evolving from low fS2/fO2 conditions, locally sealed by jaspers, to a mound growth stage with widespread subseafloor brecciation/replacement with associated zone refining. Mandoos formed at the onset of the postaxial stage (Geotimes-Tholeiitic Alley transition), and Shinas is hosted within the Alley units. Volcanism in Samail was seemingly continuous, and the low ɛNd and Nb/Ta of the Shinas hanging-wall lavas record the onset of significant modifications of the mantle source during the postaxial stage.\n Mandoos is enriched in Te + As + Se ± Zn ± Ga ± Sb relative to Shinas, where higher Cu + Au + Tl ± Mo grades possibly reflect leaching of protoarc-like lavas. Rare earth element patterns in the ores mimicking the deposit footwall can be employed to constrain volcanostratigraphic positioning and indicate that the footwall lavas may also represent a source of metals. Formation of metal-rich ochres at the sea floor likely led to Cu + Au upgrading in the ores during seawater-induced oxidation, which was enhanced during subaerial gossan formation.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.5006","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the substantial amount of research on the Cretaceous Samail ophiolite in Oman, the factors controlling the size and metal endowment of the mafic-hosted, Cu-Au(-Zn-Ag) volcanogenic massive sulfide (VMS) deposits remain elusive. This work shows that the volcanostratigraphic position, hydrothermal venting style, and oxidation processes are critical factors controlling the distinct features of the Shinas and Mandoos deposits.
Mandoos is a large (8 Mt, 1.8 wt % Cu, 0.18 g/ton Au) orebody preserving abundant primary vent-related features formed via mound growth and collapse within a wide hydrothermal field, overlying a poorly developed stockwork. The smaller Shinas deposit (0.8 Mt, 2.6 wt % Cu, 0.63 g/t Au) represents a higher-temperature system evolving from low fS2/fO2 conditions, locally sealed by jaspers, to a mound growth stage with widespread subseafloor brecciation/replacement with associated zone refining. Mandoos formed at the onset of the postaxial stage (Geotimes-Tholeiitic Alley transition), and Shinas is hosted within the Alley units. Volcanism in Samail was seemingly continuous, and the low ɛNd and Nb/Ta of the Shinas hanging-wall lavas record the onset of significant modifications of the mantle source during the postaxial stage.
Mandoos is enriched in Te + As + Se ± Zn ± Ga ± Sb relative to Shinas, where higher Cu + Au + Tl ± Mo grades possibly reflect leaching of protoarc-like lavas. Rare earth element patterns in the ores mimicking the deposit footwall can be employed to constrain volcanostratigraphic positioning and indicate that the footwall lavas may also represent a source of metals. Formation of metal-rich ochres at the sea floor likely led to Cu + Au upgrading in the ores during seawater-induced oxidation, which was enhanced during subaerial gossan formation.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.