An Analog of the Cauchy Formula for Certain Beltrami Equation

IF 0.1 Q4 MATHEMATICS, APPLIED
D. Katz, B. Kats
{"title":"An Analog of the Cauchy Formula for Certain Beltrami Equation","authors":"D. Katz, B. Kats","doi":"10.26907/2541-7746.2019.4.536-542","DOIUrl":null,"url":null,"abstract":"The Beltrami differential equations are intrinsic generalizations of the Cauchy–Riemann system in complex analysis. Their solutions generalize holomorphic functions. As known, solutions to many problems of the complex analysis are based on application of the Cauchy formula, i.e., on the integral representation of analytical functions by curvilinear integrals over boundaries of the domains of analyticity. Particularly, this representation enables us to solve the Riemann boundary-value problem for holomorphic functions, to prove the Painleve theorem on erasing of singularities of analytical functions, and to obtain many other important results. A. Tungatarov established an analog of this representation of solutions to a certain simple case of the Beltrami equation (so-called beta-analytic functions). A. Tungatarov’s representation was used by R. Abreu-Blaya, J. Bory-Reyes, and D. Pe˜na-Pe˜na for solving the problems stated by B. Riemann, P. Painleve, and other researchers. In this paper, we constructed integral representations for the solutions of more extensive classes of the Beltrami equations, which are analogs of the integral Cauchy formula, and described their applications.","PeriodicalId":41863,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","volume":"9 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2019.4.536-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The Beltrami differential equations are intrinsic generalizations of the Cauchy–Riemann system in complex analysis. Their solutions generalize holomorphic functions. As known, solutions to many problems of the complex analysis are based on application of the Cauchy formula, i.e., on the integral representation of analytical functions by curvilinear integrals over boundaries of the domains of analyticity. Particularly, this representation enables us to solve the Riemann boundary-value problem for holomorphic functions, to prove the Painleve theorem on erasing of singularities of analytical functions, and to obtain many other important results. A. Tungatarov established an analog of this representation of solutions to a certain simple case of the Beltrami equation (so-called beta-analytic functions). A. Tungatarov’s representation was used by R. Abreu-Blaya, J. Bory-Reyes, and D. Pe˜na-Pe˜na for solving the problems stated by B. Riemann, P. Painleve, and other researchers. In this paper, we constructed integral representations for the solutions of more extensive classes of the Beltrami equations, which are analogs of the integral Cauchy formula, and described their applications.
一类Beltrami方程的Cauchy公式的类比
贝尔特拉米微分方程是复分析中柯西-黎曼系统的内在推广。它们的解推广全纯函数。众所周知,复数分析中许多问题的解都是基于柯西公式的应用,即基于解析函数在解析域边界上的曲线积分的积分表示。特别是,这种表述使我们得以求解全纯函数的Riemann边值问题,证明了解析函数奇异性消除的Painleve定理,并获得了许多其他的重要结果。a . Tungatarov为某一简单的Beltrami方程(所谓的beta解析函数)建立了这种解法的类比。A. Tungatarov的表示被R. Abreu-Blaya、J. Bory-Reyes和D. Pe ~ na-Pe ~ na用于解决B. Riemann、P. Painleve和其他研究人员提出的问题。本文构造了类似于积分柯西公式的更广泛的一类Beltrami方程的解的积分表示,并描述了它们的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信