{"title":"Review on Three-Dimensionally Emulated Fiber-Embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector","authors":"Nikit Deoray, B. Kandasubramanian","doi":"10.1080/03602559.2017.1354226","DOIUrl":null,"url":null,"abstract":"ABSTRACT The proficiency to three-dimensional (3D) interweaves engineering complex structures enables component engineering with heterogeneous geometries, attributing mechanically robust lightweight cellular structures. 3D printing proffers versatile contingencies toward the single-step engineering of near-net heterogeneous 3D structure for engineering application. For enhancing the current spectrum of 3D printing technologies and rising concern toward environmental issues, 3D printing of bioactive polylactic acid is extensively exploited owing to its biodegradability and renewable aspects. Synchronously, curiosity for 3D printed composites through fiber infusion has led to the configuration of high-performance composites with augmented mechanical, physical, and chemical attributes, paving its way for wide-array engineering applications. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1354226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 35
Abstract
ABSTRACT The proficiency to three-dimensional (3D) interweaves engineering complex structures enables component engineering with heterogeneous geometries, attributing mechanically robust lightweight cellular structures. 3D printing proffers versatile contingencies toward the single-step engineering of near-net heterogeneous 3D structure for engineering application. For enhancing the current spectrum of 3D printing technologies and rising concern toward environmental issues, 3D printing of bioactive polylactic acid is extensively exploited owing to its biodegradability and renewable aspects. Synchronously, curiosity for 3D printed composites through fiber infusion has led to the configuration of high-performance composites with augmented mechanical, physical, and chemical attributes, paving its way for wide-array engineering applications. GRAPHICAL ABSTRACT