On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential

IF 0.3 Q4 MATHEMATICS
L. I. Danilov
{"title":"On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential","authors":"L. I. Danilov","doi":"10.35634/2226-3594-2021-58-02","DOIUrl":null,"url":null,"abstract":"We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\\sum f_j\\delta_{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied.\n(1) The magnetic potential $A\\colon{\\mathbb{R}}^n\\to{\\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\\mathrm{loc}}({\\mathbb{R}}^n;{\\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\\mathbb{R}}^n;{\\mathbb{R}}^n)\\cap H^q_{\\mathrm{loc}}({\\mathbb{R}}^n;{\\mathbb{R}}^n)$, $2q>n-2$.\n(2) The function $V\\colon{\\mathbb{R}}^n\\to\\mathbb{R}$ belongs to Morrey space ${\\mathfrak{L}}^{2,p}$, $p\\in \\big(\\frac{n-1}{2},\\frac{n}{2}\\big]$, of periodic functions (with a given period lattice), and\n$$\\lim\\limits_{\\tau\\to+0}\\sup\\limits_{00$ centered at a point $x\\in{\\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$.\n(3) $\\delta_{S_j}$ are $\\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\\in L^p_{\\mathrm{loc}}(S_j)$, $j=1,\\ldots,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\\{x_0+te\\colon t\\in\\mathbb{R}\\}$, $x_0\\in{\\mathbb{R}}^n$. Then we can choose the number $p>\\frac{3n}{2}-3$, $n\\geqslant 4$.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2021-58-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta_{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied. (1) The magnetic potential $A\colon{\mathbb{R}}^n\to{\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$. (2) The function $V\colon{\mathbb{R}}^n\to\mathbb{R}$ belongs to Morrey space ${\mathfrak{L}}^{2,p}$, $p\in \big(\frac{n-1}{2},\frac{n}{2}\big]$, of periodic functions (with a given period lattice), and $$\lim\limits_{\tau\to+0}\sup\limits_{00$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$. (3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm{loc}}(S_j)$, $j=1,\ldots,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac{3n}{2}-3$, $n\geqslant 4$.
具有奇异电位的多维周期磁Shrödinger算子的谱
证明了周期$n$维Schrödinger算子对于$n\ geqslant4 $的谱的绝对连续性。假定磁势A和电势V+\sum f_j\delta_{S_j}$满足一定条件。特别地,我们可以假设满足以下条件:(1)磁势$A\冒号{\mathbb{R}}^n\到{\mathbb{R}}^n$具有绝对收敛的傅里叶级数或属于$H^q_{\ mathbb{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$空间,$2q>n-1$,或属于$C({\mathbb{R}}^n;{\mathbb{R}}^n) $空间,$2q>n-2$。(2)函数$V\冒号{\mathbb{R}}^n\到\mathbb{R}} $属于Morrey空间${\mathfrak{L}}^ 2,p}$,$p\in \big(\frac{n-1}{2},\frac{n}{2}\big]$,和$$\lim\limits_{\tau\到+0}\sup\limits_{00$,中心在点$x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$是球的体积$B^n_r$, $C=C(n,p; a)>0$.(3) $\delta_{S_j}$是$\delta$-函数集中在(分段)$ C^1$-光滑周期超曲面$S_j$, $f_j\in L^p_{math_m {loc}}(S_j)$, $j=1, $ ldots,m$。在超曲面$S_j$上附加了一些几何条件,这些条件决定了数字$p\geqslant n-1$的选择。特别地,设超曲面$S_j$是$C^2$-光滑的,单位向量$e$从单位球$S^{n-1}$的依赖于磁势$A$的密集集合中任意取,并且超曲面$S_j$在单位向量$e$方向上的法曲率$S_j$与线$\{x_0+t \ In \mathbb{R} $, $x_0\ In {\mathbb{R}}}^n$的所有切点处都是非零的。然后我们可以选择数字$p>\frac{3n}{2}-3$, $n\geqslant 4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信