{"title":"On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential","authors":"L. I. Danilov","doi":"10.35634/2226-3594-2021-58-02","DOIUrl":null,"url":null,"abstract":"We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\\sum f_j\\delta_{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied.\n(1) The magnetic potential $A\\colon{\\mathbb{R}}^n\\to{\\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\\mathrm{loc}}({\\mathbb{R}}^n;{\\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\\mathbb{R}}^n;{\\mathbb{R}}^n)\\cap H^q_{\\mathrm{loc}}({\\mathbb{R}}^n;{\\mathbb{R}}^n)$, $2q>n-2$.\n(2) The function $V\\colon{\\mathbb{R}}^n\\to\\mathbb{R}$ belongs to Morrey space ${\\mathfrak{L}}^{2,p}$, $p\\in \\big(\\frac{n-1}{2},\\frac{n}{2}\\big]$, of periodic functions (with a given period lattice), and\n$$\\lim\\limits_{\\tau\\to+0}\\sup\\limits_{00$ centered at a point $x\\in{\\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$.\n(3) $\\delta_{S_j}$ are $\\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\\in L^p_{\\mathrm{loc}}(S_j)$, $j=1,\\ldots,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\\{x_0+te\\colon t\\in\\mathbb{R}\\}$, $x_0\\in{\\mathbb{R}}^n$. Then we can choose the number $p>\\frac{3n}{2}-3$, $n\\geqslant 4$.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2021-58-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta_{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied.
(1) The magnetic potential $A\colon{\mathbb{R}}^n\to{\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$.
(2) The function $V\colon{\mathbb{R}}^n\to\mathbb{R}$ belongs to Morrey space ${\mathfrak{L}}^{2,p}$, $p\in \big(\frac{n-1}{2},\frac{n}{2}\big]$, of periodic functions (with a given period lattice), and
$$\lim\limits_{\tau\to+0}\sup\limits_{00$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$.
(3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm{loc}}(S_j)$, $j=1,\ldots,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac{3n}{2}-3$, $n\geqslant 4$.