Bayesian Estimation for Two Parameters of Exponential Distribution under Different Loss Functions

H. Rasheed, Maryam N. Abd
{"title":"Bayesian Estimation for Two Parameters of Exponential Distribution under Different\n Loss Functions","authors":"H. Rasheed, Maryam N. Abd","doi":"10.30526/36.2.2946","DOIUrl":null,"url":null,"abstract":"In this paper, two parameters for the Exponential distribution were estimated\n using theBayesian estimation method under three different loss functions: the Squared\n error loss function,the Precautionary loss function, and the Entropy loss function. The\n Exponential distribution priorand Gamma distribution have been assumed as the priors of\n the scale γ and location δ parametersrespectively. In Bayesian estimation, Maximum\n likelihood estimators have been used as the initialestimators, and the Tierney-Kadane\n approximation has been used effectively. Based on the MonteCarlosimulation method, those\n estimators were compared depending on the mean squared errors (MSEs).The results showed\n that the Bayesian estimation under the Entropy loss function,assuming Exponential\n distribution and Gamma distribution priors for the scale and locationparameters,\n respectively, is the best estimator for the scale parameter. The best estimation\n methodfor location is the Bayesian estimation under the Entropy loss function in case of\n a small value ofthe scale γ (say γ < 1). Bayesian estimation under the Precautionary\n loss function is the best incase of a relatively large value of the scale γ (say γ >\n 1).","PeriodicalId":13022,"journal":{"name":"Ibn AL- Haitham Journal For Pure and Applied Sciences","volume":"1982 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn AL- Haitham Journal For Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/36.2.2946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two parameters for the Exponential distribution were estimated using theBayesian estimation method under three different loss functions: the Squared error loss function,the Precautionary loss function, and the Entropy loss function. The Exponential distribution priorand Gamma distribution have been assumed as the priors of the scale γ and location δ parametersrespectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initialestimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlosimulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian estimation under the Entropy loss function,assuming Exponential distribution and Gamma distribution priors for the scale and locationparameters, respectively, is the best estimator for the scale parameter. The best estimation methodfor location is the Bayesian estimation under the Entropy loss function in case of a small value ofthe scale γ (say γ < 1). Bayesian estimation under the Precautionary loss function is the best incase of a relatively large value of the scale γ (say γ > 1).
不同损失函数下指数分布两参数的贝叶斯估计
在三种不同的损失函数:误差平方损失函数、预防损失函数和熵损失函数下,利用贝叶斯估计方法对指数分布的两个参数进行了估计。假设尺度γ和位置δ参数的先验分别为指数分布和Gamma分布。在贝叶斯估计中,使用极大似然估计量作为初始估计量,并有效地使用了Tierney-Kadane近似。基于MonteCarlosimulation方法,根据均方误差(MSEs)对这些估计量进行比较。结果表明,在熵损失函数下,分别假设尺度参数的指数分布和Gamma分布先验,贝叶斯估计是尺度参数的最佳估计。最佳的位置估计方法是在较小的尺度γ(例如γ < 1)下的熵损失函数下的贝叶斯估计。在相对较大的尺度γ(例如γ > 1)下的贝叶斯估计是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
67
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信