Bringing Data Science to Qualitative Analysis

Y. Cheah, Drew Paine, D. Ghoshal, L. Ramakrishnan
{"title":"Bringing Data Science to Qualitative Analysis","authors":"Y. Cheah, Drew Paine, D. Ghoshal, L. Ramakrishnan","doi":"10.1109/eScience.2018.00076","DOIUrl":null,"url":null,"abstract":"Qualitative user research is a human-intensive approach that draws upon ethnographic methods from social sciences to develop insights about work practices to inform software design and development. Recent advances in data science, and in particular, natural language processing (NLP), enables the derivation of machine-generated insights to augment existing techniques. Our work describes our prototype framework based in Jupyter, a software tool that supports interactive data science and scientific computing, that leverages NLP techniques to make sense of transcribed texts from user interviews. This work also serves as a starting point for incorporating data science techniques in the qualitative analyses process.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"24 1","pages":"325-326"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Qualitative user research is a human-intensive approach that draws upon ethnographic methods from social sciences to develop insights about work practices to inform software design and development. Recent advances in data science, and in particular, natural language processing (NLP), enables the derivation of machine-generated insights to augment existing techniques. Our work describes our prototype framework based in Jupyter, a software tool that supports interactive data science and scientific computing, that leverages NLP techniques to make sense of transcribed texts from user interviews. This work also serves as a starting point for incorporating data science techniques in the qualitative analyses process.
将数据科学带入定性分析
定性用户研究是一种以人为本的方法,它利用社会科学中的人种学方法来发展对工作实践的见解,从而为软件设计和开发提供信息。数据科学的最新进展,特别是自然语言处理(NLP),使机器生成的见解能够派生,以增强现有技术。我们的工作描述了基于Jupyter的原型框架,Jupyter是一个支持交互式数据科学和科学计算的软件工具,它利用NLP技术来理解来自用户访谈的转录文本。这项工作也可以作为将数据科学技术纳入定性分析过程的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信