Rigidity of four-dimensional gradient shrinking Ricci solitons

IF 1.2 1区 数学 Q1 MATHEMATICS
Xu Cheng, Detang Zhou
{"title":"Rigidity of four-dimensional gradient shrinking Ricci solitons","authors":"Xu Cheng, Detang Zhou","doi":"10.1515/crelle-2023-0042","DOIUrl":null,"url":null,"abstract":"Abstract Let ( M , g , f ) {{(M,g,f)}} be a four-dimensional complete noncompact gradient shrinking Ricci soliton with the equation Ric + ∇ 2 ⁡ f = λ ⁢ g {{\\mathrm{Ric}+\\nabla^{2}f=\\lambda g}} , where λ {{\\lambda}} is a positive real number. We prove that if M {{M}} has constant scalar curvature S = 2 ⁢ λ {{S=2\\lambda}} , it must be a quotient of 𝕊 2 × ℝ 2 {{\\mathbb{S}^{2}\\times\\mathbb{R}^{2}}} . Together with the known results, this implies that a four-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton ℝ 4 {{\\mathbb{R}^{4}}} , 𝕊 2 × ℝ 2 {{\\mathbb{S}^{2}\\times\\mathbb{R}^{2}}} or 𝕊 3 × ℝ {{\\mathbb{S}^{3}\\times\\mathbb{R}}} .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Let ( M , g , f ) {{(M,g,f)}} be a four-dimensional complete noncompact gradient shrinking Ricci soliton with the equation Ric + ∇ 2 ⁡ f = λ ⁢ g {{\mathrm{Ric}+\nabla^{2}f=\lambda g}} , where λ {{\lambda}} is a positive real number. We prove that if M {{M}} has constant scalar curvature S = 2 ⁢ λ {{S=2\lambda}} , it must be a quotient of 𝕊 2 × ℝ 2 {{\mathbb{S}^{2}\times\mathbb{R}^{2}}} . Together with the known results, this implies that a four-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton ℝ 4 {{\mathbb{R}^{4}}} , 𝕊 2 × ℝ 2 {{\mathbb{S}^{2}\times\mathbb{R}^{2}}} or 𝕊 3 × ℝ {{\mathbb{S}^{3}\times\mathbb{R}}} .
四维梯度收缩里奇孤子的刚性
设(M,g,f) {{(M,g,f)}}是一个四维完全非紧梯度收缩Ricci孤子,方程为Ric +∇2 λ f= λ¹g {{\mathrm{Ric} + \nabla ^{2f}= \lambda g,}}其中λ {{\lambda}}为正实数。我们证明了如果M {{M}}具有恒定的标量曲率S=2²λ {{S=2\lambda}},它一定是 2 ×∈2 {{\mathbb{S} ^{2}\times\mathbb{R} ^{2}}}的商。结合已知的结果,这意味着一个四维完全梯度收缩里奇孤子具有恒定的标量曲率当且仅当它是刚性的,也就是说,它要么是爱因斯坦孤子,要么是高斯收缩孤子的有限商(∈4 {{\mathbb{R} ^{4}}}, 2 ×∈2 {{\mathbb{S} ^{2}\times\mathbb{R} ^{2}}}或 3 ×∈{{\mathbb{S} ^{3}\times\mathbb{R}}})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信