{"title":"Rigidity of four-dimensional gradient shrinking Ricci solitons","authors":"Xu Cheng, Detang Zhou","doi":"10.1515/crelle-2023-0042","DOIUrl":null,"url":null,"abstract":"Abstract Let ( M , g , f ) {{(M,g,f)}} be a four-dimensional complete noncompact gradient shrinking Ricci soliton with the equation Ric + ∇ 2 f = λ g {{\\mathrm{Ric}+\\nabla^{2}f=\\lambda g}} , where λ {{\\lambda}} is a positive real number. We prove that if M {{M}} has constant scalar curvature S = 2 λ {{S=2\\lambda}} , it must be a quotient of 𝕊 2 × ℝ 2 {{\\mathbb{S}^{2}\\times\\mathbb{R}^{2}}} . Together with the known results, this implies that a four-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton ℝ 4 {{\\mathbb{R}^{4}}} , 𝕊 2 × ℝ 2 {{\\mathbb{S}^{2}\\times\\mathbb{R}^{2}}} or 𝕊 3 × ℝ {{\\mathbb{S}^{3}\\times\\mathbb{R}}} .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Let ( M , g , f ) {{(M,g,f)}} be a four-dimensional complete noncompact gradient shrinking Ricci soliton with the equation Ric + ∇ 2 f = λ g {{\mathrm{Ric}+\nabla^{2}f=\lambda g}} , where λ {{\lambda}} is a positive real number. We prove that if M {{M}} has constant scalar curvature S = 2 λ {{S=2\lambda}} , it must be a quotient of 𝕊 2 × ℝ 2 {{\mathbb{S}^{2}\times\mathbb{R}^{2}}} . Together with the known results, this implies that a four-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton ℝ 4 {{\mathbb{R}^{4}}} , 𝕊 2 × ℝ 2 {{\mathbb{S}^{2}\times\mathbb{R}^{2}}} or 𝕊 3 × ℝ {{\mathbb{S}^{3}\times\mathbb{R}}} .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.