Handling Cellwise Outliers by Sparse Regression and Robust Covariance

Jakob Raymaekers, P. Rousseeuw
{"title":"Handling Cellwise Outliers by Sparse Regression and Robust Covariance","authors":"Jakob Raymaekers, P. Rousseeuw","doi":"10.52933/jdssv.v1i3.18","DOIUrl":null,"url":null,"abstract":"We propose a data-analytic method for detecting cellwise outliers. Given a robust covariance matrix, outlying cells (entries) in a row are found by the cellFlagger technique which combines lasso regression with a stepwise application of constructed cutoff values. The penalty term of the lasso has a physical interpretation as the total distance that suspicious cells need to move in order to bring their row into the fold. For estimating a cellwise robust covariance matrix we construct a detection-imputation method which alternates between flagging outlying cells and updating the covariance matrix as in the EM algorithm. The proposed methods are illustrated by simulations and on real data about volatile organic compounds in children.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v1i3.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a data-analytic method for detecting cellwise outliers. Given a robust covariance matrix, outlying cells (entries) in a row are found by the cellFlagger technique which combines lasso regression with a stepwise application of constructed cutoff values. The penalty term of the lasso has a physical interpretation as the total distance that suspicious cells need to move in order to bring their row into the fold. For estimating a cellwise robust covariance matrix we construct a detection-imputation method which alternates between flagging outlying cells and updating the covariance matrix as in the EM algorithm. The proposed methods are illustrated by simulations and on real data about volatile organic compounds in children.
稀疏回归和稳健协方差处理单元格异常值
我们提出了一种数据分析方法来检测细胞异常值。给定一个鲁棒协方差矩阵,通过cellFlagger技术找到行中的外围细胞(条目),该技术将套索回归与逐步应用构建的截止值相结合。套索的惩罚期限有一个物理解释,即可疑细胞需要移动的总距离,以便将其排到折叠中。为了估计细胞鲁棒协方差矩阵,我们构造了一种检测-imputation方法,该方法与EM算法一样,在标记外围细胞和更新协方差矩阵之间交替进行。所提出的方法通过模拟和儿童挥发性有机化合物的真实数据来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信