{"title":"A Bayesian framework for robust speech enhancement under varying contexts","authors":"D. Hanumantha, Rao Naidu, Sriram Srinivasan","doi":"10.1109/ICASSP.2012.6288932","DOIUrl":null,"url":null,"abstract":"Single-microphone speech enhancement algorithms that employ trained codebooks of parametric representations of speech spectra have been shown to be successful in the suppression of non-stationary noise, e.g., in mobile phones. In this paper, we introduce the concept of a context-dependent codebook, and look at two aspects of context: dependency on the particular speaker using the mobile device, and on the acoustic condition during usage (e.g., hands-free mode in a reverberant room). Such context-dependent codebooks may be trained on-line. A new scheme is proposed to appropriately combine the estimates resulting from the context-dependent and context-independent codebooks under a Bayesian framework. Experimental results establish that the proposed approach performs better than the context-independent codebook in the case of a context match and better than the context-dependent codebook in the case of a context mismatch.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"121 1","pages":"4557-4560"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Single-microphone speech enhancement algorithms that employ trained codebooks of parametric representations of speech spectra have been shown to be successful in the suppression of non-stationary noise, e.g., in mobile phones. In this paper, we introduce the concept of a context-dependent codebook, and look at two aspects of context: dependency on the particular speaker using the mobile device, and on the acoustic condition during usage (e.g., hands-free mode in a reverberant room). Such context-dependent codebooks may be trained on-line. A new scheme is proposed to appropriately combine the estimates resulting from the context-dependent and context-independent codebooks under a Bayesian framework. Experimental results establish that the proposed approach performs better than the context-independent codebook in the case of a context match and better than the context-dependent codebook in the case of a context mismatch.