{"title":"Absence of WARM percolation in the very strong reinforcement regime","authors":"C. Hirsch, Mark Holmes, V. Kleptsyn","doi":"10.1214/20-AAP1587","DOIUrl":null,"url":null,"abstract":"We study a class of reinforcement models involving a Poisson process on the vertices of certain infinite graphs G. When a vertex fires, one of the edges incident to that vertex is selected. The edge selection is biased towards edges that have been selected many times previously, and a parameter α governs the strength of this bias. We show that for various graphs (including all graphs of bounded degree), if α 1 (the very strong reinforcement regime) then the random subgraph consisting of edges that are ever selected by this process does not percolate (all connected components are finite). Combined with results appearing in a companion paper, this proves that on these graphs, with α sufficiently large, all connected components are in fact trees. If the Poisson firing rates are constant over the vertices, then these trees are of diameter at most 3. The proof of non-percolation relies on coupling with a percolationtype model that may be of interest in its own right.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AAP1587","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
We study a class of reinforcement models involving a Poisson process on the vertices of certain infinite graphs G. When a vertex fires, one of the edges incident to that vertex is selected. The edge selection is biased towards edges that have been selected many times previously, and a parameter α governs the strength of this bias. We show that for various graphs (including all graphs of bounded degree), if α 1 (the very strong reinforcement regime) then the random subgraph consisting of edges that are ever selected by this process does not percolate (all connected components are finite). Combined with results appearing in a companion paper, this proves that on these graphs, with α sufficiently large, all connected components are in fact trees. If the Poisson firing rates are constant over the vertices, then these trees are of diameter at most 3. The proof of non-percolation relies on coupling with a percolationtype model that may be of interest in its own right.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.