Inheritance of the wood properties of the Japanese red pine (Pinus densiflora Siebold et Zucc.) from the open-pollinated families selected as resistance to the pine wood nematode
F. Ishiguri, I. Nezu, R. Endo, Saki Kobayashi, A. Ngadianto, Daigo Narusawa, Yusuke Takahashi, J. Tanabe, Taiichi Iki, J. Ohshima, S. Yokota
{"title":"Inheritance of the wood properties of the Japanese red pine (Pinus densiflora Siebold et Zucc.) from the open-pollinated families selected as resistance to the pine wood nematode","authors":"F. Ishiguri, I. Nezu, R. Endo, Saki Kobayashi, A. Ngadianto, Daigo Narusawa, Yusuke Takahashi, J. Tanabe, Taiichi Iki, J. Ohshima, S. Yokota","doi":"10.2478/sg-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract Pine wilt disease is one of the most serious tree diseases occurring worldwide. Clones of Pinus densiflora Siebold et Zucc with pine wood nematode resistance were selected. In addition to resistance, wood quality is also an important criterion in the breeding program of P. densiflora because of its use as construction lumber. However, little information is available on the wood qualities of the progenies of resistant clones. The repeatabilities of the wood properties were investigated for 11 open-pollinated families of P. densiflora selected for their pine wood nematode resistance. Oven-dry density, latewood tracheid length, the microfibril angle (MFA) of the S2 layer in latewood tracheids, modulus of elasticity (MOE), and modulus of rupture (MOR) were measured in the third or fourth annual ring from the pith. No significant correlations were found between the wood properties and the stem diameter or tree height. However, significant correlations were found between oven-dry density and MOE or MOR, which suggests that oven-dry density is a good indicator for selecting wood with higher bending properties. Among the measured wood properties, oven-dry density had the highest repeatability (R=0.47), followed by MOR (R=0.33), tracheid length (R=0.21), and MFA (R=0.14). MOE had the lowest value (R=0.01). The 11 families examined were classified into three groups according to their growth characteristics, wood properties, and resistance to pine wilt disease. On the basis of the results, we conclude that genetic improvement of wood properties especially for wood density and MOR is possible for the resistant P. densiflora.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silvae Genetica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/sg-2021-0016","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Pine wilt disease is one of the most serious tree diseases occurring worldwide. Clones of Pinus densiflora Siebold et Zucc with pine wood nematode resistance were selected. In addition to resistance, wood quality is also an important criterion in the breeding program of P. densiflora because of its use as construction lumber. However, little information is available on the wood qualities of the progenies of resistant clones. The repeatabilities of the wood properties were investigated for 11 open-pollinated families of P. densiflora selected for their pine wood nematode resistance. Oven-dry density, latewood tracheid length, the microfibril angle (MFA) of the S2 layer in latewood tracheids, modulus of elasticity (MOE), and modulus of rupture (MOR) were measured in the third or fourth annual ring from the pith. No significant correlations were found between the wood properties and the stem diameter or tree height. However, significant correlations were found between oven-dry density and MOE or MOR, which suggests that oven-dry density is a good indicator for selecting wood with higher bending properties. Among the measured wood properties, oven-dry density had the highest repeatability (R=0.47), followed by MOR (R=0.33), tracheid length (R=0.21), and MFA (R=0.14). MOE had the lowest value (R=0.01). The 11 families examined were classified into three groups according to their growth characteristics, wood properties, and resistance to pine wilt disease. On the basis of the results, we conclude that genetic improvement of wood properties especially for wood density and MOR is possible for the resistant P. densiflora.
期刊介绍:
Silvae Genetica is an international peer reviewed journal with more than 65 year tradition and experience in all fields of theoretical and applied Forest Genetics and Tree breeding. It continues "Zeitschrift für Forstgenetik und Forstpflanzenzüchtung" (Journal of Forest Genetics and Forest Tree Breeding) founded by W. LANGNER in 1951.