Iteratively Enhanced Semidefinite Relaxations for Efficient Neural Network Verification

Jianglin Lan, Yang Zheng, A. Lomuscio
{"title":"Iteratively Enhanced Semidefinite Relaxations for Efficient Neural Network Verification","authors":"Jianglin Lan, Yang Zheng, A. Lomuscio","doi":"10.1609/aaai.v37i12.26744","DOIUrl":null,"url":null,"abstract":"We propose an enhanced semidefinite program (SDP) relaxation to enable the tight and efficient verification of neural networks (NNs). The tightness improvement is achieved by introducing a nonlinear constraint to existing SDP relaxations previously proposed for NN verification. The efficiency of the proposal stems from the iterative nature of the proposed algorithm in that it solves the resulting non-convex SDP by recursively solving auxiliary convex layer-based SDP problems. We show formally that the solution generated by our algorithm is tighter than state-of-the-art SDP-based solutions for the problem. We also show that the solution sequence converges to the optimal solution of the non-convex enhanced SDP relaxation. The experimental results on standard benchmarks in the area show that our algorithm achieves the state-of-the-art performance whilst maintaining an acceptable computational cost.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"29 1","pages":"14937-14945"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i12.26744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an enhanced semidefinite program (SDP) relaxation to enable the tight and efficient verification of neural networks (NNs). The tightness improvement is achieved by introducing a nonlinear constraint to existing SDP relaxations previously proposed for NN verification. The efficiency of the proposal stems from the iterative nature of the proposed algorithm in that it solves the resulting non-convex SDP by recursively solving auxiliary convex layer-based SDP problems. We show formally that the solution generated by our algorithm is tighter than state-of-the-art SDP-based solutions for the problem. We also show that the solution sequence converges to the optimal solution of the non-convex enhanced SDP relaxation. The experimental results on standard benchmarks in the area show that our algorithm achieves the state-of-the-art performance whilst maintaining an acceptable computational cost.
高效神经网络验证的迭代增强半定松弛
我们提出了一种增强的半定程序(SDP)松弛,以实现神经网络(nn)的严密和有效验证。通过对先前提出的用于神经网络验证的现有SDP松弛引入非线性约束来提高紧密性。该建议的效率源于所提出算法的迭代性质,即通过递归地求解辅助的基于凸层的SDP问题来解决所得到的非凸SDP。我们正式表明,我们的算法生成的解决方案比最先进的基于sdp的解决方案更严格。我们还证明了解序列收敛于非凸增强SDP松弛的最优解。在该领域的标准基准上的实验结果表明,我们的算法在保持可接受的计算成本的同时达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信