Detection and Estimation of Multiple DoA Targets with Single Snapshot Measurements

Rakshith Jagannath
{"title":"Detection and Estimation of Multiple DoA Targets with Single Snapshot Measurements","authors":"Rakshith Jagannath","doi":"10.1109/NCC.2019.8732225","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the problems of detecting the number of narrow-band, far-field targets and estimating their corresponding directions of arrivals (DoAs) from single snapshot measurements. We use the principles of sparse signal recovery (SSR) for detection and estimation of multiple targets. In the SSR framework, the DoA estimation problem is grid based and can be posed as the lasso optimization problem. The corresponding DoA detection problem reduces to estimating the optimal regularization parameter $(\\tau)$ of the lasso problem for achieving the required probability of correct detection $(P_{c})$. We propose finite sample and asymptotic test statistics for detecting the number of sources with the required $P_{c}$ at moderate to high signal to noise ratios. Once the number of sources are detected, or equivalently the optimal $\\hat{\\tau}$ is estimated, the corresponding DoAs can be estimated by solving the lasso with regularization parameter set to $\\hat{\\tau}$.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we explore the problems of detecting the number of narrow-band, far-field targets and estimating their corresponding directions of arrivals (DoAs) from single snapshot measurements. We use the principles of sparse signal recovery (SSR) for detection and estimation of multiple targets. In the SSR framework, the DoA estimation problem is grid based and can be posed as the lasso optimization problem. The corresponding DoA detection problem reduces to estimating the optimal regularization parameter $(\tau)$ of the lasso problem for achieving the required probability of correct detection $(P_{c})$. We propose finite sample and asymptotic test statistics for detecting the number of sources with the required $P_{c}$ at moderate to high signal to noise ratios. Once the number of sources are detected, or equivalently the optimal $\hat{\tau}$ is estimated, the corresponding DoAs can be estimated by solving the lasso with regularization parameter set to $\hat{\tau}$.
基于单快照测量的多DoA目标检测与估计
在本文中,我们探讨了从单快照测量中检测窄带远场目标的数量和估计其相应的到达方向(DoAs)的问题。我们利用稀疏信号恢复(SSR)原理对多目标进行检测和估计。在SSR框架中,DoA估计问题是基于网格的,可以化为套索优化问题。相应的DoA检测问题可简化为估计lasso问题的最优正则化参数$(\tau)$,以获得所需的正确检测概率$(P_{c})$。我们提出了有限样本和渐近检验统计量,用于在中等到高信噪比下检测具有所需$P_{c}$的源的数量。一旦检测到源的数量,或者等效地估计出最优的$\hat{\tau}$,就可以通过求解正则化参数设置为$\hat{\tau}$的套索来估计相应的doa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信