Fela: Incorporating Flexible Parallelism and Elastic Tuning to Accelerate Large-Scale DML

Jinkun Geng, Dan Li, Shuai Wang
{"title":"Fela: Incorporating Flexible Parallelism and Elastic Tuning to Accelerate Large-Scale DML","authors":"Jinkun Geng, Dan Li, Shuai Wang","doi":"10.1109/ICDE48307.2020.00124","DOIUrl":null,"url":null,"abstract":"Distributed machine learning (DML) has become the common practice in industry, because of the explosive volume of training data and the growing complexity of training model. Traditional DML follows data parallelism but causes significant communication cost, due to the huge amount of parameter transmission. The recently emerging model-parallel solutions can reduce the communication workload, but leads to load imbalance and serious straggler problems. More importantly, the existing solutions, either data-parallel or model-parallel, ignore the nature of flexible parallelism for most DML tasks, thus failing to fully exploit the GPU computation power. Targeting at these existing drawbacks, we propose Fela, which incorporates both flexible parallelism and elastic tuning mechanism to accelerate DML. In order to fully leverage GPU power and reduce communication cost, Fela adopts hybrid parallelism and uses flexible parallel degrees to train different parts of the model. Meanwhile, Fela designs token-based scheduling policy to elastically tune the workload among different workers, thus mitigating the straggler effect and achieve better load balance. Our comparative experiments show that Fela can significantly improve the training throughput and outperforms the three main baselines (i.e. dataparallel, model-parallel, and hybrid-parallel) by up to 3.23×, 12.22×, and 1.85× respectively.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"32 1","pages":"1393-1404"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Distributed machine learning (DML) has become the common practice in industry, because of the explosive volume of training data and the growing complexity of training model. Traditional DML follows data parallelism but causes significant communication cost, due to the huge amount of parameter transmission. The recently emerging model-parallel solutions can reduce the communication workload, but leads to load imbalance and serious straggler problems. More importantly, the existing solutions, either data-parallel or model-parallel, ignore the nature of flexible parallelism for most DML tasks, thus failing to fully exploit the GPU computation power. Targeting at these existing drawbacks, we propose Fela, which incorporates both flexible parallelism and elastic tuning mechanism to accelerate DML. In order to fully leverage GPU power and reduce communication cost, Fela adopts hybrid parallelism and uses flexible parallel degrees to train different parts of the model. Meanwhile, Fela designs token-based scheduling policy to elastically tune the workload among different workers, thus mitigating the straggler effect and achieve better load balance. Our comparative experiments show that Fela can significantly improve the training throughput and outperforms the three main baselines (i.e. dataparallel, model-parallel, and hybrid-parallel) by up to 3.23×, 12.22×, and 1.85× respectively.
结合灵活并行性和弹性调优加速大规模DML
由于训练数据的爆炸式增长和训练模型的日益复杂,分布式机器学习(DML)已经成为工业上的普遍实践。传统的DML遵循数据并行性,但由于需要传输大量的参数,导致通信成本很高。近年来出现的模型并行解决方案虽然可以减少通信工作量,但也会导致负载不平衡和严重的离散问题。更重要的是,现有的解决方案,无论是数据并行还是模型并行,都忽略了大多数DML任务灵活并行的本质,从而无法充分利用GPU的计算能力。针对这些缺点,我们提出了Fela,它结合了灵活的并行性和弹性调优机制来加速DML。为了充分利用GPU的能力,降低通信成本,Fela采用混合并行,使用灵活的并行度来训练模型的不同部分。同时,Fela设计了基于令牌的调度策略,在不同工作人员之间弹性调整工作负载,从而减轻了掉队效应,实现了更好的负载平衡。我们的对比实验表明,Fela可以显著提高训练吞吐量,并且比三个主要基线(即数据并行,模型并行和混合并行)分别高出3.23倍,12.22倍和1.85倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信