Cataloging Public Objects Using Aerial and Street-Level Images — Urban Trees

J. D. Wegner, Steve Branson, David Hall, K. Schindler, P. Perona
{"title":"Cataloging Public Objects Using Aerial and Street-Level Images — Urban Trees","authors":"J. D. Wegner, Steve Branson, David Hall, K. Schindler, P. Perona","doi":"10.1109/CVPR.2016.647","DOIUrl":null,"url":null,"abstract":"Each corner of the inhabited world is imaged from multiple viewpoints with increasing frequency. Online map services like Google Maps or Here Maps provide direct access to huge amounts of densely sampled, georeferenced images from street view and aerial perspective. There is an opportunity to design computer vision systems that will help us search, catalog and monitor public infrastructure, buildings and artifacts. We explore the architecture and feasibility of such a system. The main technical challenge is combining test time information from multiple views of each geographic location (e.g., aerial and street views). We implement two modules: det2geo, which detects the set of locations of objects belonging to a given category, and geo2cat, which computes the fine-grained category of the object at a given location. We introduce a solution that adapts state-of the-art CNN-based object detectors and classifiers. We test our method on \"Pasadena Urban Trees\", a new dataset of 80,000 trees with geographic and species annotations, and show that combining multiple views significantly improves both tree detection and tree species classification, rivaling human performance.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"44 1","pages":"6014-6023"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

Each corner of the inhabited world is imaged from multiple viewpoints with increasing frequency. Online map services like Google Maps or Here Maps provide direct access to huge amounts of densely sampled, georeferenced images from street view and aerial perspective. There is an opportunity to design computer vision systems that will help us search, catalog and monitor public infrastructure, buildings and artifacts. We explore the architecture and feasibility of such a system. The main technical challenge is combining test time information from multiple views of each geographic location (e.g., aerial and street views). We implement two modules: det2geo, which detects the set of locations of objects belonging to a given category, and geo2cat, which computes the fine-grained category of the object at a given location. We introduce a solution that adapts state-of the-art CNN-based object detectors and classifiers. We test our method on "Pasadena Urban Trees", a new dataset of 80,000 trees with geographic and species annotations, and show that combining multiple views significantly improves both tree detection and tree species classification, rivaling human performance.
使用空中和街道级图像编目公共对象-城市树木
有人居住的世界的每个角落都从多个视点成像,频率越来越高。像谷歌Maps或Here Maps这样的在线地图服务提供了直接访问大量密集采样的街道视图和空中视角的地理参考图像。我们有机会设计计算机视觉系统,帮助我们搜索、编目和监控公共基础设施、建筑和文物。我们探讨了这样一个系统的架构和可行性。主要的技术挑战是结合来自每个地理位置的多个视图的测试时间信息(例如,空中和街道视图)。我们实现了两个模块:det2geo和geo2cat,前者检测属于给定类别的对象的位置集,后者计算给定位置上对象的细粒度类别。我们介绍了一种解决方案,该解决方案采用了最先进的基于cnn的对象检测器和分类器。我们在“帕萨迪纳城市树木”上测试了我们的方法,这是一个包含80,000棵树的新数据集,带有地理和物种注释,结果表明,结合多个视图显著提高了树木检测和树种分类,与人类的表现相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信