Anish Mittal, Anush K. Moorthy, A. Bovik, L. Cormack
{"title":"Automatic prediction of saliency on JPEG distorted images","authors":"Anish Mittal, Anush K. Moorthy, A. Bovik, L. Cormack","doi":"10.1109/QoMEX.2011.6065702","DOIUrl":null,"url":null,"abstract":"We propose an algorithm to detect salient regions for JPEG distorted images for two tasks: quality assessment and free viewing. The algorithm extracts low-level features such as contrast, luminance, quality and so on and uses a machine-learning framework to predict salient regions in JPEG distorted images. We demonstrate that the automatically predicted regions-of-interest highly correlate with those from (human) ground truth saliency maps. Further, we evaluate the relevance of extracted low-level features for saliency prediction and analyze how incorporation of quality as a feature improves prediction performance as a function of the distortion severity. Applications of such a saliency prediction framework include developing novel pooling strategies for image quality assessment.","PeriodicalId":6441,"journal":{"name":"2011 Third International Workshop on Quality of Multimedia Experience","volume":"223 1","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Workshop on Quality of Multimedia Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2011.6065702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We propose an algorithm to detect salient regions for JPEG distorted images for two tasks: quality assessment and free viewing. The algorithm extracts low-level features such as contrast, luminance, quality and so on and uses a machine-learning framework to predict salient regions in JPEG distorted images. We demonstrate that the automatically predicted regions-of-interest highly correlate with those from (human) ground truth saliency maps. Further, we evaluate the relevance of extracted low-level features for saliency prediction and analyze how incorporation of quality as a feature improves prediction performance as a function of the distortion severity. Applications of such a saliency prediction framework include developing novel pooling strategies for image quality assessment.