Pyrolysis Carbonization of Sago Starch

H. Wibowo
{"title":"Pyrolysis Carbonization of Sago Starch","authors":"H. Wibowo","doi":"10.36055/JIP.V10I1.11289","DOIUrl":null,"url":null,"abstract":"Battery requirements are increasing over time, the anode for sodium ion batteries (SIB) can use amorphous carbon. Carbon synthesis is carried out via pyrolysis. Research on the synthesis of carbon derived from sago starch is still rare. This study aims to determine the carbon characteristics of sago starch treated with nitrogen doping according to the SIB anode by taking into account the morphology, size distribution, material structure, material composition, and the distance between layers. The carbonization method used in this research is the pyrolysis process at 900 o C for 1 hour. Variations in the experiment were carried out through direct pyrolysis process with variations of urea against starch 3:1, 2:1, and pure starch. The experimental results were analysis using SEM (EDS) and XRD. The results showed that the pyrolysis process doped with nitrogen with a ratio of 3:1 urea had an interlayer distance of 0.353304 nm, 2:1 had an interlayer of 0.368059 nm, and 0.390178 nm of pure sago starch. This value indicates that carbon is a non-graphite material (> 0.3354 nm). The carbon produced from pyrolysis produces carbon that is amorphous and has a similar shape, which is like wood.","PeriodicalId":17757,"journal":{"name":"JURNAL INTEGRASI PROSES","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL INTEGRASI PROSES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36055/JIP.V10I1.11289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Battery requirements are increasing over time, the anode for sodium ion batteries (SIB) can use amorphous carbon. Carbon synthesis is carried out via pyrolysis. Research on the synthesis of carbon derived from sago starch is still rare. This study aims to determine the carbon characteristics of sago starch treated with nitrogen doping according to the SIB anode by taking into account the morphology, size distribution, material structure, material composition, and the distance between layers. The carbonization method used in this research is the pyrolysis process at 900 o C for 1 hour. Variations in the experiment were carried out through direct pyrolysis process with variations of urea against starch 3:1, 2:1, and pure starch. The experimental results were analysis using SEM (EDS) and XRD. The results showed that the pyrolysis process doped with nitrogen with a ratio of 3:1 urea had an interlayer distance of 0.353304 nm, 2:1 had an interlayer of 0.368059 nm, and 0.390178 nm of pure sago starch. This value indicates that carbon is a non-graphite material (> 0.3354 nm). The carbon produced from pyrolysis produces carbon that is amorphous and has a similar shape, which is like wood.
西米淀粉的热解碳化
随着时间的推移,电池的要求越来越高,钠离子电池(SIB)的阳极可以使用非晶碳。碳合成是通过热解进行的。以西米淀粉为原料合成碳的研究尚不多见。本研究旨在根据SIB阳极,综合考虑形貌、粒径分布、材料结构、材料组成、层间距离等因素,确定氮掺杂西米淀粉处理后的碳特性。本研究采用的炭化方法是在900℃下热解1小时。实验采用尿素与淀粉的比例分别为3:1、2:1和纯淀粉的直接热解工艺进行变化。采用SEM (EDS)和XRD对实验结果进行了分析。结果表明,尿素掺杂比例为3:1的氮气热解过程的层间距离为0.353304 nm, 2:1的层间距离为0.368059 nm,纯西米淀粉的层间距离为0.390178 nm。该值表明碳是非石墨材料(> 0.3354 nm)。热解产生的碳是无定形的,形状类似于木头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信