Shrikant Utagi, V. Rao, R. Srikanth, Subhashis Banerjee
{"title":"A Class of Quasi-Eternal Non-Markovian Pauli Channels and Their Measure","authors":"Shrikant Utagi, V. Rao, R. Srikanth, Subhashis Banerjee","doi":"10.1142/S1230161220500195","DOIUrl":null,"url":null,"abstract":"We study a class of qubit non-Markovian general Pauli dynamical maps with multiple singularities in the generator. We discuss a few easy examples involving trigonometric or other nonmonotonic time dependence of the map, and discuss in detail the structure of channels which don’t have any trigonometric functional dependence. We demystify the concept of a singularity here, showing that it corresponds to a point where the dynamics can be regular but the map is momentarily noninvertible, and this gives a basic guideline to construct such non-invertible non-Markovian channels. Most members of the channels in the considered family are quasi-eternally non-Markovian (QENM), which is a broader class of non-Markovian channels than the eternal non-Markovian channels. Specifically, the measure of quasi-eternal non-Markovian (QENM) channels in the considered class is shown to be [Formula: see text] in the isotropic case, and about 0.96 in the anisotropic case.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"13 1","pages":"2050019:1-2050019:20"},"PeriodicalIF":1.3000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161220500195","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study a class of qubit non-Markovian general Pauli dynamical maps with multiple singularities in the generator. We discuss a few easy examples involving trigonometric or other nonmonotonic time dependence of the map, and discuss in detail the structure of channels which don’t have any trigonometric functional dependence. We demystify the concept of a singularity here, showing that it corresponds to a point where the dynamics can be regular but the map is momentarily noninvertible, and this gives a basic guideline to construct such non-invertible non-Markovian channels. Most members of the channels in the considered family are quasi-eternally non-Markovian (QENM), which is a broader class of non-Markovian channels than the eternal non-Markovian channels. Specifically, the measure of quasi-eternal non-Markovian (QENM) channels in the considered class is shown to be [Formula: see text] in the isotropic case, and about 0.96 in the anisotropic case.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.