A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems

IF 1 Q3 Engineering
Chantelle Blachut, C. Gonz'alez-Tokman
{"title":"A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems","authors":"Chantelle Blachut, C. Gonz'alez-Tokman","doi":"10.3934/jcd.2020015","DOIUrl":null,"url":null,"abstract":"Coherent structures are spatially varying regions which disperse minimally over time and organise motion in non-autonomous systems. This work develops and implements algorithms providing multilayered descriptions of time-dependent systems which are not only useful for locating coherent structures, but also for detecting time windows within which these structures undergo fundamental structural changes, such as merging and splitting events. These algorithms rely on singular value decompositions associated to Ulam type discretisations of transfer operators induced by dynamical systems, and build on recent developments in multiplicative ergodic theory. Furthermore, they allow us to investigate various connections between the evolution of relevant singular value decompositions and dynamical features of the system. The approach is tested on models of periodically and quasi-periodically driven systems, as well as on a geophysical dataset corresponding to the splitting of the Southern Polar Vortex.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

Abstract

Coherent structures are spatially varying regions which disperse minimally over time and organise motion in non-autonomous systems. This work develops and implements algorithms providing multilayered descriptions of time-dependent systems which are not only useful for locating coherent structures, but also for detecting time windows within which these structures undergo fundamental structural changes, such as merging and splitting events. These algorithms rely on singular value decompositions associated to Ulam type discretisations of transfer operators induced by dynamical systems, and build on recent developments in multiplicative ergodic theory. Furthermore, they allow us to investigate various connections between the evolution of relevant singular value decompositions and dynamical features of the system. The approach is tested on models of periodically and quasi-periodically driven systems, as well as on a geophysical dataset corresponding to the splitting of the Southern Polar Vortex.
两个漩涡的故事:数值遍历理论和传递算子如何揭示非自治动力系统中相干结构的基本变化
连贯结构是空间变化的区域,随着时间的推移分散最小,并在非自治系统中组织运动。这项工作开发并实现了提供时间相关系统的多层描述的算法,这些算法不仅用于定位相干结构,而且用于检测这些结构经历基本结构变化的时间窗口,例如合并和分裂事件。这些算法依赖于与由动力系统引起的传递算子的Ulam型离散相关的奇异值分解,并建立在乘法遍历理论的最新发展基础上。此外,它们使我们能够研究相关奇异值分解的演化与系统动态特征之间的各种联系。该方法在周期性和准周期性驱动系统模型以及南极涡旋分裂对应的地球物理数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信