{"title":"Synthesize of dendritic fibrous nano-silica functionalized by cysteine and its application as advanced adsorbent","authors":"Nilufar Khantan, N. Shadjou, M. Hasanzadeh","doi":"10.1080/20550324.2019.1669925","DOIUrl":null,"url":null,"abstract":"Abstract l-Cysteine-modified dendritic fibrous nanosilica grafted by amine groups (Cys-DFNS-NH2) have been synthesized by a novel hydrothermal method. The N2 adsorption–desorption isotherms analysis on the Cys-DFNS-NH2 show that the average pore volume and surface area of the prepared fibrous Cys-DFNS-NH2 were 2.2 cm3/g and 205 m2/g, respectively, while the average pore size is 6.06 nm. Adsorption behavior of the Cys-DFNS-NH2 for Cd2+, Cu2+, Ag+, and Pb2+ was investigated by electrochemical methods. The results show that Cys-DFNS-NH2 can selectively adsorb Cd2+, Ag+, and Pb2+ in different potentials. Finally, the application of the engineered adsorbent for the removal of Cd2+, Ag+, and Pb2+ from contaminated water samples was examined. This work provides a new platform to the synthesis of Cys-DFNS-NH2 with high specific surface area for efficient adsorbent of specific metal ions. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"46 1","pages":"104 - 113"},"PeriodicalIF":4.2000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2019.1669925","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 16
Abstract
Abstract l-Cysteine-modified dendritic fibrous nanosilica grafted by amine groups (Cys-DFNS-NH2) have been synthesized by a novel hydrothermal method. The N2 adsorption–desorption isotherms analysis on the Cys-DFNS-NH2 show that the average pore volume and surface area of the prepared fibrous Cys-DFNS-NH2 were 2.2 cm3/g and 205 m2/g, respectively, while the average pore size is 6.06 nm. Adsorption behavior of the Cys-DFNS-NH2 for Cd2+, Cu2+, Ag+, and Pb2+ was investigated by electrochemical methods. The results show that Cys-DFNS-NH2 can selectively adsorb Cd2+, Ag+, and Pb2+ in different potentials. Finally, the application of the engineered adsorbent for the removal of Cd2+, Ag+, and Pb2+ from contaminated water samples was examined. This work provides a new platform to the synthesis of Cys-DFNS-NH2 with high specific surface area for efficient adsorbent of specific metal ions. Graphical Abstract