{"title":"A Just Approach Balancing Rawlsian Leximax Fairness and Utilitarianism","authors":"V. Chen, J. Hooker","doi":"10.1145/3375627.3375844","DOIUrl":null,"url":null,"abstract":"Numerous AI-assisted resource allocation decisions need to balance the conflicting goals of fairness and efficiency. Our paper studies the challenging task of defining and modeling a proper fairness-efficiency trade off. We define fairness with Rawlsian leximax fairness, which views the lexicographic maximum among all feasible outcomes as the most equitable; and define efficiency with Utilitarianism, which seeks to maximize the sum of utilities received by entities regardless of individual differences. Motivated by a justice-driven trade off principle: prioritize fairness to benefit the less advantaged unless too much efficiency is sacrificed, we propose a sequential optimization procedure to balance leximax fairness and utilitarianism in decision-making. Each iteration of our approach maximizes a social welfare function, and we provide a practical mixed integer/linear programming (MILP) formulation for each maximization problem. We illustrate our method on a budget allocation example. Compared with existing approaches of balancing equity and efficiency, our method is more interpretable in terms of parameter selection, and incorporates a strong equity criterion with a thoroughly balanced perspective.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Numerous AI-assisted resource allocation decisions need to balance the conflicting goals of fairness and efficiency. Our paper studies the challenging task of defining and modeling a proper fairness-efficiency trade off. We define fairness with Rawlsian leximax fairness, which views the lexicographic maximum among all feasible outcomes as the most equitable; and define efficiency with Utilitarianism, which seeks to maximize the sum of utilities received by entities regardless of individual differences. Motivated by a justice-driven trade off principle: prioritize fairness to benefit the less advantaged unless too much efficiency is sacrificed, we propose a sequential optimization procedure to balance leximax fairness and utilitarianism in decision-making. Each iteration of our approach maximizes a social welfare function, and we provide a practical mixed integer/linear programming (MILP) formulation for each maximization problem. We illustrate our method on a budget allocation example. Compared with existing approaches of balancing equity and efficiency, our method is more interpretable in terms of parameter selection, and incorporates a strong equity criterion with a thoroughly balanced perspective.