SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

IF 0.3 Q4 MATHEMATICS, APPLIED
Minam Moon, Yang Hwan Lim
{"title":"SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS","authors":"Minam Moon, Yang Hwan Lim","doi":"10.12941/JKSIAM.2016.20.295","DOIUrl":null,"url":null,"abstract":"A BSTRACT . We propose a projection-based analysis of a new hybridizable discontinuous Galerkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses L 2 − projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p +1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"22 1","pages":"295-308"},"PeriodicalIF":0.3000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2016.20.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A BSTRACT . We propose a projection-based analysis of a new hybridizable discontinuous Galerkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses L 2 − projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p +1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.
二阶椭圆方程的杂化不连续伽辽金法的超收敛性
摘要。提出了一种新的二阶椭圆方程的可杂化不连续Galerkin方法的投影分析方法。与标准HDG方法相比,该方法具有更高的阶精度和更低的计算成本,并且具有更大的灵活性。与标准HDG方法相比,我们的新方法的显著区别在于,我们的方法使用l2 -投影和合适的稳定参数,这取决于超收敛的网格大小。我们证明了当我们只使用p +1次多项式作为没有后处理的有限元空间时,方程解的误差收敛于p + 2阶。在建立理论基础上,通过数值试验验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信