An innervated skin 3D in vitro model for dermatological research.

IF 2.4
In vitro models Pub Date : 2022-06-10 eCollection Date: 2023-08-01 DOI:10.1007/s44164-022-00021-0
Emma Rousi, Afonso Malheiro, Abhishek Harichandan, Ronny Mohren, Ana Filipa Lourenço, Carlos Mota, Berta Cillero-Pastor, Paul Wieringa, Lorenzo Moroni
{"title":"An innervated skin 3D in vitro model for dermatological research.","authors":"Emma Rousi, Afonso Malheiro, Abhishek Harichandan, Ronny Mohren, Ana Filipa Lourenço, Carlos Mota, Berta Cillero-Pastor, Paul Wieringa, Lorenzo Moroni","doi":"10.1007/s44164-022-00021-0","DOIUrl":null,"url":null,"abstract":"<p><p>A 3D in vitro model of innervated skin would be a useful tool in dermatological research to study the effect of different chemicals and compounds on the sensory properties of skin. Current innervated skin models are limited in composition and often composed of ex vivo skin explants and/or animal-derived material. In this study, our aim was to develop a human innervated skin model with a better biomimicry composition for in vitro research. Fibrin hydrogel and aligned electrospun fibers of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) were used as a scaffold to generate the 3D in vitro model. The skin component was made of primary human keratinocytes and primary human fibroblasts, while the neuronal component was composed of iPSC-derived sensory neurons. Our results showed that the dermal component consisted of fibroblasts and synthesized collagen. The epidermal component was characterized by the expression of keratins 10 and 14, and involucrin. Finally, sensory neurons extended axons throughout the scaffold and reached the epidermis. Treating the model with a capsaicin solution for 30 min, which was performed as a proof of concept test for sensitization studies, resulted into partial depletion of substance P and tubulin β3. This model could be used for studying skin-neuron interactions and cutaneous toxicity.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00021-0.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"15 1","pages":"113-121"},"PeriodicalIF":2.4000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00021-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A 3D in vitro model of innervated skin would be a useful tool in dermatological research to study the effect of different chemicals and compounds on the sensory properties of skin. Current innervated skin models are limited in composition and often composed of ex vivo skin explants and/or animal-derived material. In this study, our aim was to develop a human innervated skin model with a better biomimicry composition for in vitro research. Fibrin hydrogel and aligned electrospun fibers of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) were used as a scaffold to generate the 3D in vitro model. The skin component was made of primary human keratinocytes and primary human fibroblasts, while the neuronal component was composed of iPSC-derived sensory neurons. Our results showed that the dermal component consisted of fibroblasts and synthesized collagen. The epidermal component was characterized by the expression of keratins 10 and 14, and involucrin. Finally, sensory neurons extended axons throughout the scaffold and reached the epidermis. Treating the model with a capsaicin solution for 30 min, which was performed as a proof of concept test for sensitization studies, resulted into partial depletion of substance P and tubulin β3. This model could be used for studying skin-neuron interactions and cutaneous toxicity.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-022-00021-0.

用于皮肤病学研究的神经支配皮肤3D体外模型。
神经支配皮肤的体外三维模型将为皮肤病学研究不同化学物质和化合物对皮肤感觉特性的影响提供一个有用的工具。目前的神经支配皮肤模型的成分有限,通常由体外皮肤外植体和/或动物源性材料组成。在这项研究中,我们的目的是建立一个具有更好的仿生学成分的人类神经支配皮肤模型,用于体外研究。以纤维蛋白水凝胶和聚环氧乙烷/聚对苯二甲酸丁二酯定向电纺纤维(PEOT/PBT)为支架制备体外3D模型。皮肤成分由原代人角质形成细胞和原代人成纤维细胞组成,而神经元成分由ipsc衍生的感觉神经元组成。我们的结果表明,真皮成分由成纤维细胞和合成胶原组成。表皮成分的特征是角蛋白10、角蛋白14和天花素的表达。最后,感觉神经元将轴突延伸至整个支架并到达表皮。用辣椒素溶液处理模型30分钟,作为致敏研究的概念验证测试,导致P物质和微管蛋白β3部分耗竭。该模型可用于研究皮肤神经元相互作用和皮肤毒性。补充资料:在线版本包含补充资料,提供地址:10.1007/s44164-022-00021-0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信