From information to knowledge: harvesting entities and relationships from web sources

G. Weikum, M. Theobald
{"title":"From information to knowledge: harvesting entities and relationships from web sources","authors":"G. Weikum, M. Theobald","doi":"10.1145/1807085.1807097","DOIUrl":null,"url":null,"abstract":"There are major trends to advance the functionality of search engines to a more expressive semantic level. This is enabled by the advent of knowledge-sharing communities such as Wikipedia and the progress in automatically extracting entities and relationships from semistructured as well as natural-language Web sources. Recent endeavors of this kind include DBpedia, EntityCube, KnowItAll, ReadTheWeb, and our own YAGO-NAGA project (and others). The goal is to automatically construct and maintain a comprehensive knowledge base of facts about named entities, their semantic classes, and their mutual relations as well as temporal contexts, with high precision and high recall. This tutorial discusses state-of-the-art methods, research opportunities, and open challenges along this avenue of knowledge harvesting.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"40 1","pages":"65-76"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

There are major trends to advance the functionality of search engines to a more expressive semantic level. This is enabled by the advent of knowledge-sharing communities such as Wikipedia and the progress in automatically extracting entities and relationships from semistructured as well as natural-language Web sources. Recent endeavors of this kind include DBpedia, EntityCube, KnowItAll, ReadTheWeb, and our own YAGO-NAGA project (and others). The goal is to automatically construct and maintain a comprehensive knowledge base of facts about named entities, their semantic classes, and their mutual relations as well as temporal contexts, with high precision and high recall. This tutorial discusses state-of-the-art methods, research opportunities, and open challenges along this avenue of knowledge harvesting.
从信息到知识:从web资源中获取实体和关系
目前的主要趋势是将搜索引擎的功能提升到更具表达性的语义水平。这得益于维基百科等知识共享社区的出现,以及从半结构化和自然语言Web资源中自动提取实体和关系的进展。最近的这类努力包括DBpedia、EntityCube、KnowItAll、ReadTheWeb和我们自己的YAGO-NAGA项目(以及其他项目)。目标是自动构建和维护一个关于命名实体、它们的语义类、它们的相互关系以及时间上下文的全面的事实知识库,具有高精度和高召回率。本教程讨论了沿着这条知识获取途径的最先进的方法、研究机会和开放的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信