M. Atakishiyeva, N. Atakishiyev, J. Loreto-Hernández
{"title":"More on algebraic properties of the discrete Fourier transform raising and lowering operators","authors":"M. Atakishiyeva, N. Atakishiyev, J. Loreto-Hernández","doi":"10.1063/1.5114023","DOIUrl":null,"url":null,"abstract":"In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.","PeriodicalId":6841,"journal":{"name":"4open","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5114023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.